Biology:Nuclear receptor co-repressor 2

From HandWiki
Short description: Protein-coding gene in the species Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

The nuclear receptor co-repressor 2 (NCOR2) is a transcriptional coregulatory protein that contains several nuclear receptor-interacting domains. In addition, NCOR2 appears to recruit histone deacetylases to DNA promoter regions. Hence NCOR2 assists nuclear receptors in the down regulation of target gene expression.[1][2] NCOR2 is also referred to as a silencing mediator for retinoid or thyroid-hormone receptors (SMRT)[1] or T3 receptor-associating cofactor 1 (TRAC-1).[2]

Function

NCOR2/SMRT is a transcriptional coregulatory protein that contains several modulatory functional domains including multiple autonomous repression domains as well as two or three C-terminal nuclear receptor-interacting domains.[1] NCOR2/SMRT serves as a repressive coregulatory factor (corepressor) for multiple transcription factor pathways. In this regard, NCOR2/SMRT functions as a platform protein, facilitating the recruitment of histone deacetylases to the DNA promoters bound by its interacting transcription factors.[3]

Family

It is a member of the family of nuclear receptor corepressors; the other human protein that is a member of that family is Nuclear receptor co-repressor 1.[4]

Discovery

SMRT was initially cloned and characterized in the laboratory of Dr. Ronald M. Evans at the Salk Institute for Biological Studies.[1] In another early investigation into this molecule, similar findings were reported in a variant referred to as TRAC-1.[2]

Interactions

Nuclear receptor co-repressor 2 has been shown to interact with:


References

  1. 1.0 1.1 1.2 1.3 "A transcriptional co-repressor that interacts with nuclear hormone receptors". Nature 377 (6548): 454–7. October 1995. doi:10.1038/377454a0. PMID 7566127. Bibcode1995Natur.377..454C. 
  2. 2.0 2.1 2.2 "Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors". Molecular Endocrinology 10 (7): 813–25. July 1996. doi:10.1210/mend.10.7.8813722. PMID 8813722. 
  3. "Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase". Cell 89 (3): 373–80. May 1997. doi:10.1016/S0092-8674(00)80218-4. PMID 9150137. 
  4. UniProt Nuclear receptor corepressors family Page accessed June 26, 2016
  5. "Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT". The Journal of Biological Chemistry 278 (7): 5052–61. February 2003. doi:10.1074/jbc.M206374200. PMID 12441355. 
  6. "Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor". Molecular Endocrinology 18 (1): 70–85. January 2004. doi:10.1210/me.2003-0189. PMID 14593076. 
  7. "The amino terminus of the human AR is target for corepressor action and antihormone agonism". Molecular Endocrinology 16 (4): 661–73. April 2002. doi:10.1210/me.16.4.661. PMID 11923464. 
  8. 8.0 8.1 "Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6". The Journal of Biological Chemistry 273 (42): 27695–702. October 1998. doi:10.1074/jbc.273.42.27695. PMID 9765306. 
  9. "BCoR, a novel corepressor involved in BCL-6 repression". Genes & Development 14 (14): 1810–23. July 2000. doi:10.1101/gad.14.14.1810. PMID 10898795. 
  10. "Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and gammaFBP-B". Proceedings of the National Academy of Sciences of the United States of America 96 (26): 14831–6. December 1999. doi:10.1073/pnas.96.26.14831. PMID 10611298. Bibcode1999PNAS...9614831D. 
  11. 11.0 11.1 11.2 11.3 "Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor". The Journal of Biological Chemistry 275 (17): 12470–4. April 2000. doi:10.1074/jbc.275.17.12470. PMID 10777532. 
  12. 12.0 12.1 "Isolation and characterization of a novel class II histone deacetylase, HDAC10". The Journal of Biological Chemistry 277 (8): 6656–66. February 2002. doi:10.1074/jbc.M108055200. PMID 11739383. 
  13. 13.0 13.1 "A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1". The Journal of Biological Chemistry 275 (51): 40463–70. December 2000. doi:10.1074/jbc.M007864200. PMID 11013263. 
  14. 14.0 14.1 14.2 "Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3". The EMBO Journal 19 (16): 4342–50. August 2000. doi:10.1093/emboj/19.16.4342. PMID 10944117. 
  15. 15.0 15.1 "Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1". The EMBO Journal 22 (6): 1336–46. March 2003. doi:10.1093/emboj/cdg120. PMID 12628926. 
  16. 16.0 16.1 "Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex". Genes & Development 16 (24): 3130–5. December 2002. doi:10.1101/gad.1037502. PMID 12502735. 
  17. 17.0 17.1 "A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness". Genes & Development 14 (9): 1048–57. May 2000. doi:10.1101/gad.14.9.1048. PMID 10809664. 
  18. 18.0 18.1 "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Molecular Cell 9 (1): 45–57. January 2002. doi:10.1016/S1097-2765(01)00429-4. PMID 11804585. 
  19. "N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso". Molecular Cell 12 (3): 723–34. September 2003. doi:10.1016/j.molcel.2003.08.008. PMID 14527417. 
  20. 20.0 20.1 20.2 "Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway". Genes & Development 14 (1): 45–54. January 2000. doi:10.1101/gad.14.1.45. PMID 10640275. 
  21. "Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor". Nature Neuroscience 16 (7): 898–902. July 2013. doi:10.1038/nn.3434. PMID 23770565. 
  22. "Silencing mediator of retinoid and thyroid hormone receptors and activating signal cointegrator-2 as transcriptional coregulators of the orphan nuclear receptor Nur77". The Journal of Biological Chemistry 276 (47): 43734–9. November 2001. doi:10.1074/jbc.M107208200. PMID 11559707. 
  23. "Silencing mediator for retinoid and thyroid hormone receptors interacts with octamer transcription factor-1 and acts as a transcriptional repressor". The Journal of Biological Chemistry 276 (13): 9720–5. March 2001. doi:10.1074/jbc.M008531200. PMID 11134019. 
  24. "The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling". Proceedings of the National Academy of Sciences of the United States of America 99 (5): 2613–8. March 2002. doi:10.1073/pnas.052707099. PMID 11867749. Bibcode2002PNAS...99.2613S. 
  25. "The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding". Molecular and Cellular Biology 20 (9): 3102–15. May 2000. doi:10.1128/MCB.20.9.3102-3115.2000. PMID 10757795. 
  26. "Role of PML and PML-RARalpha in Mad-mediated transcriptional repression". Molecular Cell 7 (6): 1233–43. June 2001. doi:10.1016/S1097-2765(01)00257-X. PMID 11430826. 
  27. "Arsenic trioxide is a potent inhibitor of the interaction of SMRT corepressor with Its transcription factor partners, including the PML-retinoic acid receptor alpha oncoprotein found in human acute promyelocytic leukemia". Molecular and Cellular Biology 21 (21): 7172–82. November 2001. doi:10.1128/MCB.21.21.7172-7182.2001. PMID 11585900. 
  28. "The origin of the ankyrin repeat region in Notch intracellular domains is critical for regulation of HES promoter activity". Mechanisms of Development 104 (1–2): 3–20. June 2001. doi:10.1016/S0925-4773(01)00373-2. PMID 11404076. 
  29. "Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex". Molecular and Cellular Biology 21 (18): 6222–32. September 2001. doi:10.1128/MCB.21.18.6222-6232.2001. PMID 11509665. 
  30. "IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFkappaB pathways". Molecular Biology of the Cell 14 (2): 491–502. February 2003. doi:10.1091/mbc.E02-07-0404. PMID 12589049. 
  31. 31.0 31.1 "The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT". Blood 103 (12): 4650–8. June 2004. doi:10.1182/blood-2003-08-2759. PMID 14982881. 
  32. "Oligomerization of ETO is obligatory for corepressor interaction". Molecular and Cellular Biology 21 (1): 156–63. January 2001. doi:10.1128/MCB.21.1.156-163.2001. PMID 11113190. 
  33. "Interactions of STAT5b-RARalpha, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways". Blood 99 (8): 2637–46. April 2002. doi:10.1182/blood.V99.8.2637. PMID 11929748. 
  34. 34.0 34.1 "SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia". Proceedings of the National Academy of Sciences of the United States of America 94 (17): 9028–33. August 1997. doi:10.1073/pnas.94.17.9028. PMID 9256429. Bibcode1997PNAS...94.9028H. 
  35. "A role for SKIP in EBNA2 activation of CBF1-repressed promoters". Journal of Virology 74 (4): 1939–47. February 2000. doi:10.1128/JVI.74.4.1939-1947.2000. PMID 10644367. 
  36. "SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function". Molecular and Cellular Biology 20 (7): 2400–10. April 2000. doi:10.1128/MCB.20.7.2400-2410.2000. PMID 10713164. 
  37. "Sharp, an inducible cofactor that integrates nuclear receptor repression and activation". Genes & Development 15 (9): 1140–51. May 2001. doi:10.1101/gad.871201. PMID 11331609. 
  38. "Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors". Endocrinology 139 (10): 4197–204. October 1998. doi:10.1210/endo.139.10.6218. PMID 9751500. 
  39. 39.0 39.1 "The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators". Biochemical and Biophysical Research Communications 253 (2): 358–63. December 1998. doi:10.1006/bbrc.1998.9799. PMID 9878542. 
  40. "Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance". Molecular Endocrinology 15 (9): 1529–38. September 2001. doi:10.1210/mend.15.9.0687. PMID 11518802. 
  41. "AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor". Cancer Research 62 (23): 7050–8. December 2002. PMID 12460926. 

Further reading


External links