Biology:Firmicutes

From HandWiki
Short description: phylum of bacteria

Firmicutes
Bacillus subtilis Gram.jpg
Bacillus subtilis, Gram-stained
Scientific classification e
Domain: Bacteria
Clade: Terrabacteria
Phylum: Bacillota
Gibbons and Murray 1978,[1] Murray, 1984[2]
Classes
Synonyms
  • Endospora
  • Endobacteria Cavalier-Smith 2002
  • "Endobacteria" Cavalier-Smith 1998
  • "Mollifirmicutes"
  • Mollicutes Edward & Freundt 1967
  • Mollicutaeota Oren et al. 2015
  • "Halanaerobiaeota"
  • Tenericutes Murray 1984

The Firmicutes (Latin: firmus, strong, and cutis, skin, referring to the cell wall) are a phylum of bacteria, most of which have gram-positive cell wall structure.[3] A few, however, such as Megasphaera, Pectinatus, Selenomonas and Zymophilus, have a porous pseudo-outer membrane that causes them to stain gram-negative. Scientists once classified the Firmicutes to include all gram-positive bacteria, but have recently defined them to be of a core group of related forms called the low-G+C group, in contrast to the Actinobacteria. They have round cells, called cocci (singular coccus), or rod-like forms (bacillus).

Many Firmicutes produce endospores, which are resistant to desiccation and can survive extreme conditions. They are found in various environments, and the group includes some notable pathogens. Those in one family, the heliobacteria, produce energy through anoxygenic photosynthesis. Firmicutes play an important role in beer, wine, and cider spoilage.

Classes

The group is typically divided into the Clostridia, which are anaerobic, and the Bacilli, which are obligate or facultative aerobes.

On phylogenetic trees, the first two groups show up as paraphyletic or polyphyletic, as do their main genera, Clostridium and Bacillus.[4] However, Firmicutes as a whole is generally believed to be monophyletic, or paraphyletic with the exclusion of Mollicutes.[5]

Phylogeny

A phylogeny by Annotree[6] and GTDB release 05-RS95 (17 July 2020).[7]

Firmicutes
Firmicutes G

Limnochordia

Firmicutes E

"Thermaerobacteria"

"Symbiobacteriia"

"Sulfobacillia"

"Selenobacteria"

Negativicutes

Firmicutes B

"Syntrophomonadia"

"Dehalobacteriia"

"Peptococcia"

"Desulfitobacteriia"

"Moorellia"

"Thermincolia"

"Desulfotomaculia"

"Halanaerobiaeota"

"Halanaerobiia"

Firmicutes A

"Thermosediminibacteria"

"Thermoanaerobacteria"

"Mahellia"

Clostridiia s.s.

Firmicutes D

"Proteinivoracia"

"Dethiobacteria"

"Natranaerobiia"

"Fusobacteriota"

Fusobacteria

"Bacillota"

"Alicyclobacillia"

"Desulfuribacillia"

"Bacillia" s.s.

This second phylogeny is based on 16S rRNA-based LTP release 132 by the All-Species Living Tree Project,[8] with the currently accepted taxonomy based on the List of Prokaryotic names with Standing in Nomenclature (LPSN),[9] National Center for Biotechnology Information (NCBI),[10] and some non-validated clade names from Genome Taxonomy Database.[11]

"Thermaerobacteria"

Thermaerobacter {"Thermaerobacterales": "Thermaerobacteraceae"}

"Thermoanaerobacteria"

Caldicellulosiruptor {"Caldicellulosiruptorales": "Caldicellulosiruptoraceae"}

"Thermovenabulales"

Dictyoglomus {Dictyoglomaceae}

Tepidanaerobacter {"Tepidanaerobacteraceae"}

"Thermovenabulaceae"

"Ammonificaceae" {"Ammonifexales"}

Thermoanaerobacteraceae {Thermoanaerobacterales}

"Moorellaceae" {"Moorellales"}

"Thermacetogeniaceae" {"Thermacetogeniales"}

Carboxydothermus {"Carboxydothermales": "Carboxydothermaceae"}

"Symbiobacteriia"

Gelria

Symbiobacterium {"Symbiobacteriales": Symbiobacteriaceae}

Sulfobacillus {"Sulfobacillales": "Sulfobacillaceae"}

Clostridia s.s.

Bacillia

Genera

More than 274 genera were considered (As of 2016) to be within the Firmicutes phylum,[citation needed] notable genera of Firmicutes include:

Bacilli, order Bacillales

Bacilli, order Lactobacillales

Clostridia

Erysipelotrichia

Clinical significance

Firmicutes make up the largest portion of the mouse and human gut microbiome.[12][failed verification] The division Firmicutes as part of the gut microbiota has been shown to be involved in energy resorption, and potentially related to the development of diabetes and obesity.[13][14][15][16] Within the gut of healthy human adults, the most abundant bacterium: Faecalibacterium prausnitzii (F. prausnitzii), which makes up 5% of the total gut microbiome, is a member of the Firmicutes phylum. This species is directly associated with reduced low-grade inflammation in obesity.[17] F. prausnitzii has been found in higher levels within the guts of obese children than in non-obese children.

In multiple studies a higher abundance of Firmicutes has been found in obese individuals than in lean controls. A higher level of Lactobacillus (of the Firmicutes phylum) has been found in obese patients and in one study, obese patients put on weight loss diets showed a reduced amount of Firmicutes within their guts.[18]

Diet changes in mice have also been shown to promote changes in Firmicutes abundance. A higher relative abundance of Firmicutes was seen in mice fed a western diet (high fat/high sugar) than in mice fed a standard low fat/ high polysaccharide diet. The higher amount of Firmicutes was also linked to more adiposity and body weight within mice.[19] Specifically, within obese mice, the class Mollicutes (within the Firmicutes phylum) was the most common. When the microbiota of obese mice with this higher Firmicutes abundance was transplanted into the guts of germ-free mice, the germ-free mice gained a significant amount of fat as compared to those transplanted with the microbiota of lean mice with lower Firmicutes abundance.[20]

The presence of Christensenella (Firmicutes, in class Clostridia), isolated from human faeces, has been found to correlate with lower body mass index.[21]

References

  1. Gibbons, N. E. & Murray, R. G. E. 1978. Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 28:1–6, (PDF)
  2. Murray, R. G. E. (1984). The higher taxa, or, a place for everything...?. In: N. R. Krieg & J. G. Holt (ed.) Bergey's Manual of Systematic Bacteriology, vol. 1, The Williams & Wilkins Co., Baltimore, p. 31–34.
  3. "Firmicutes" at Dorland's Medical Dictionary
  4. "Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data". Int. J. Syst. Evol. Microbiol. 54 (Pt 3): 871–5. May 2004. doi:10.1099/ijs.0.02868-0. PMID 15143038. http://ijs.sgmjournals.org/cgi/pmidlookup?view=long&pmid=15143038. 
  5. Ciccarelli, FD (2006). "Toward automatic reconstruction of a highly resolved tree of life.". Science 311 (5765): 1283–1287. doi:10.1126/science.1123061. PMID 16513982. Bibcode2006Sci...311.1283C. http://www.sciencemag.org/cgi/content/full/311/5765/1283. 
  6. Mendler, K; Chen, H; Parks, DH; Hug, LA; Doxey, AC (2019). "AnnoTree: visualization and exploration of a functionally annotated microbial tree of life". Nucleic Acids Research 47 (9): 4442–4448. doi:10.1093/nar/gkz246. PMID 31081040. PMC 6511854. http://annotree.uwaterloo.ca/app/. 
  7. "GTDB release 05-RS95". https://gtdb.ecogenomic.org/about#4%7C. 
  8. "16S rRNA-based LTP release 132 (full tree)". Silva Comprehensive Ribosomal RNA Database. https://itol.embl.de/tree/37201229170412631528207598. 
  9. J. P. Euzéby. "Firmicutes". List of Prokaryotic names with Standing in Nomenclature (LPSN). http://www.bacterio.cict.fr/classifphyla.html#Firmicutes. 
  10. Sayers. "Firmicutes". National Center for Biotechnology Information (NCBI) taxonomy database. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=1239&lvl=3&lin. 
  11. "GTDB taxonomy". https://data.ace.uq.edu.au/public/gtdb/release83/bac_taxonomy_r83.tsv. 
  12. "Ecological and evolutionary forces shaping microbial diversity in the human intestine". Cell 124 (4): 837–848. 2006. doi:10.1016/j.cell.2006.02.017. PMID 16497592. 
  13. "Microbial ecology: human gut microbes associated with obesity". Nature 444 (7122): 1022–1023. 2006. doi:10.1038/4441022a. PMID 17183309. Bibcode2006Natur.444.1022L. 
  14. Henig, Robin Marantz (2006-08-13). "Fat Factors". New York Times Magazine. https://www.nytimes.com/2006/08/13/magazine/13obesity.html?pagewanted=3&ei=5070&en=0c39c5880e4d7067&ex=1166850000. 
  15. "Obesity alters gut microbial ecology". Proc. Natl. Acad. Sci. USA 102 (31): 11070–11075. August 2005. doi:10.1073/pnas.0504978102. PMID 16033867. Bibcode2005PNAS..10211070L. 
  16. Komaroff AL. The Microbiome and Risk for Obesity and Diabetes. JAMA. Published online December 22, 2016. doi:10.1001/jama.2016.20099
  17. Chakraborti, Chandra Kanti (15 November 2015). "New-found link between microbiota and obesity". World Journal of Gastrointestinal Pathophysiology 6 (4): 110–119. doi:10.4291/wjgp.v6.i4.110. PMID 26600968. 
  18. Million, M.; Lagier, J.-C; Yahav, D.; Paul, M. (April 2013). "Gut bacterial microbiota and obesity". Clinical Microbiology and Infection 19 (4): 305–313. doi:10.1111/1469-0691.12172. PMID 23452229. 
  19. Turnbaugh, Peter J. (17 April 2008). "Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome". Cell Host & Microbe 3 (4): 213–223. doi:10.1016/j.chom.2008.02.015. PMID 18407065. 
  20. Million, M. (April 2013). "Gut bacterial microbiota and obesity". Cell Microbiology and Infection 19 (4): 305–313. doi:10.1111/1469-0691.12172. PMID 23452229. 
  21. Goodrich, Julia K.; Waters, Jillian L.; Poole, Angela C.; Sutter, Jessica L.; Koren, Omry; Blekhman, Ran; Beaumont, Michelle; Van Treuren, William et al. (2014). "Human Genetics Shape the Gut Microbiome". Cell 159 (4): 789–799. doi:10.1016/j.cell.2014.09.053. ISSN 0092-8674. PMID 25417156. open access

External links

Wikidata ☰ Q149075 entry