Tanhc function

From HandWiki
The cardinal hyperbolic tangent function tanhc(z) plotted in the complex plane from -2-2i to 2+2i
The cardinal hyperbolic tangent function tanhc(z) plotted in the complex plane from -2-2i to 2+2i

In mathematics, the tanhc function is defined for [math]\displaystyle{ z \neq 0 }[/math] as[1] [math]\displaystyle{ \operatorname{tanhc}(z)=\frac {\tanh(z) }{z} }[/math]The tanhc function is the hyperbolic analogue of the tanc function.

Tanhc 2D plot
Tanhc'(z) 2D plot
Tanhc integral 2D plot
Tanhc integral 3D plot

Properties

The first-order derivative is given by

[math]\displaystyle{ \frac {\operatorname{sech}^2(z)}{z} - \frac {\tanh(z)}{z^2} }[/math]

The Taylor series expansion[math]\displaystyle{ \operatorname{tanhc} z \approx \left(1-\frac{1}{3} z^2 + \frac {2}{15} z^4 - \frac {17}{315} z^6 + \frac {62}{2835} z^8 - \frac {1382}{155925} z^{10} + \frac {21844}{6081075} z^{12} - \frac {929569}{638512875} z^{14}+O(z^{16}) \right) }[/math]which leads to the series expansion of the integral as[math]\displaystyle{ \int _{0}^{z}\!{\frac {\tanh \left( x \right) }{x}}{dx}=(z-{\frac {1}{ 9}}{z}^{3}+{\frac {2}{75}}{z}^{5}-{\frac {17}{2205}}{z}^{7}+{\frac {62 }{25515}}{z}^{9}-{\frac {1382}{1715175}}{z}^{11}+O \left( {z}^{13} \right) ) }[/math]


The Padé approximant is[math]\displaystyle{ \operatorname{tanhc} \left( z \right) = \left( 1+{\frac {7}{51}}\,{z}^{2}+{\frac {1}{255}}\,{z}^{4}+{\frac {2}{69615}}\,{z}^{6}+{\frac {1}{34459425}}\,{z}^{8} \right) \left( 1+{\frac {8}{17}}\,{z}^{2}+{\frac {7}{255}}\,{z}^{4}+{\frac {4}{9945}}\,{z}^{6}+{\frac {1}{765765}}\,{z}^{8} \right) ^{-1} }[/math]

In terms of other special functions

  • [math]\displaystyle{ \operatorname{tanhc}(z)=2\,{\frac {{{\rm KummerM}\left(1,\,2,\,2\,z\right)}}{(2\,iz+\pi) {\rm KummerM}(1,\,2,\,i\pi -2\,z) e^{2\,z-1/2\,i\pi} }} }[/math], where [math]\displaystyle{ {\rm{KummerM}}(a,b,z) }[/math] is Kummer's confluent hypergeometric function.
  • [math]\displaystyle{ \operatorname{tanhc}(z)=2 \frac {\operatorname{HeunB}(2,0,0,0,\sqrt{2} \sqrt{z})}{( 2iz+\pi) \operatorname{HeunB}( 2,0,0,0,\sqrt{2} \sqrt{1/2\,i\pi -z}) e^{2\,z-1/2\,i\pi}} }[/math], where [math]\displaystyle{ {\rm{HeunB}}(q, \alpha, \gamma, \delta, \epsilon ,z) }[/math] is the biconfluent Heun function.
  • [math]\displaystyle{ \operatorname{tanhc}(z)= \frac{i{\rm \ WhittakerM}(0,\,1/2,\,2\,z)}{{\rm WhittakerM}(0,\,1/2,\,i\pi -2\,z)} z }[/math], where [math]\displaystyle{ {\rm{WhittakerM}}(a,b,z) }[/math] is a Whittaker function.

Gallery

Tanhc abs complex 3D
Tanhc Im complex 3D plot
Tanhc Re complex 3D plot
Tanhc'(z) Im complex 3D plot
Tanhc'(z) Re complex 3D plot
Tanhc'(z) abs complex 3D plot
Tanhc abs plot
Tanhc Im plot
Tanhc Re plot
Tanhc'(z) Im plot
Tanhc'(z) abs plot
Tanhc'(z) Re plot
Tanhc integral abs 3D plot
Tanhc integral Im 3D plot
Tanhc integral Re 3D plot
Tanhc integral abs density plot
Tanhc integral Im density plot
Tanhc integral Re density plot

See also

References