Ramanujan tau function

From HandWiki
Values of |τ(n)| for n < 16,000 with a logarithmic scale. The blue line picks only the values of n that are multiples of 121.

The Ramanujan tau function, studied by Ramanujan (1916), is the function [math]\displaystyle{ \tau : \mathbb{N} \rarr\mathbb{Z} }[/math] defined by the following identity:

[math]\displaystyle{ \sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}\left(1-q^n\right)^{24} = q\phi(q)^{24} = \eta(z)^{24}=\Delta(z), }[/math]

where q = exp(2πiz) with Im z > 0, [math]\displaystyle{ \phi }[/math] is the Euler function, η is the Dedekind eta function, and the function Δ(z) is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form (some authors, notably Apostol, write [math]\displaystyle{ \Delta/(2\pi)^{12} }[/math] instead of [math]\displaystyle{ \Delta }[/math]). It appears in connection to an "error term" involved in counting the number of ways of expressing an integer as a sum of 24 squares. A formula due to Ian G. Macdonald was given in (Dyson 1972).

Values

The first few values of the tau function are given in the following table (sequence A000594 in the OEIS):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
τ(n) 1 −24 252 −1472 4830 −6048 −16744 84480 −113643 −115920 534612 −370944 −577738 401856 1217160 987136

Ramanujan's conjectures

(Ramanujan 1916) observed, but did not prove, the following three properties of τ(n):

  • τ(mn) = τ(m)τ(n) if gcd(m,n) = 1 (meaning that τ(n) is a multiplicative function)
  • τ(pr + 1) = τ(p)τ(pr) − p11 τ(pr − 1) for p prime and r > 0.
  • |τ(p)| ≤ 2p11/2 for all primes p.

The first two properties were proved by (Mordell 1917) and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).

Congruences for the tau function

For k[math]\displaystyle{ \mathbb{Z} }[/math] and n[math]\displaystyle{ \mathbb{Z} }[/math]>0, define σk(n) as the sum of the kth powers of the divisors of n. The tau function satisfies several congruence relations; many of them can be expressed in terms of σk(n). Here are some:[1]

  1. [math]\displaystyle{ \tau(n)\equiv\sigma_{11}(n)\ \bmod\ 2^{11}\text{ for }n\equiv 1\ \bmod\ 8 }[/math][2]
  2. [math]\displaystyle{ \tau(n)\equiv 1217 \sigma_{11}(n)\ \bmod\ 2^{13}\text{ for } n\equiv 3\ \bmod\ 8 }[/math][2]
  3. [math]\displaystyle{ \tau(n)\equiv 1537 \sigma_{11}(n)\ \bmod\ 2^{12}\text{ for }n\equiv 5\ \bmod\ 8 }[/math][2]
  4. [math]\displaystyle{ \tau(n)\equiv 705 \sigma_{11}(n)\ \bmod\ 2^{14}\text{ for }n\equiv 7\ \bmod\ 8 }[/math][2]
  5. [math]\displaystyle{ \tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{6}\text{ for }n\equiv 1\ \bmod\ 3 }[/math][3]
  6. [math]\displaystyle{ \tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{7}\text{ for }n\equiv 2\ \bmod\ 3 }[/math][3]
  7. [math]\displaystyle{ \tau(n)\equiv n^{-30}\sigma_{71}(n)\ \bmod\ 5^{3}\text{ for }n\not\equiv 0\ \bmod\ 5 }[/math][4]
  8. [math]\displaystyle{ \tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7\text{ for }n\equiv 0,1,2,4\ \bmod\ 7 }[/math][5]
  9. [math]\displaystyle{ \tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7^2\text{ for }n\equiv 3,5,6\ \bmod\ 7 }[/math][5]
  10. [math]\displaystyle{ \tau(n)\equiv\sigma_{11}(n)\ \bmod\ 691. }[/math][6]

For p ≠ 23 prime, we have[1][7]

  1. [math]\displaystyle{ \tau(p)\equiv 0\ \bmod\ 23\text{ if }\left(\frac{p}{23}\right)=-1 }[/math]
  2. [math]\displaystyle{ \tau(p)\equiv \sigma_{11}(p)\ \bmod\ 23^2\text{ if } p\text{ is of the form } a^2+23b^2 }[/math][8]
  3. [math]\displaystyle{ \tau(p)\equiv -1\ \bmod\ 23\text{ otherwise}. }[/math]

Explicit formula

In 1975 Douglas Niebur proved an explicit formula for the Ramanujan tau function:[9]

[math]\displaystyle{ \tau(n)=n^4\sigma(n)-24\sum_{i=1}^{n-1}i^2(35i^2-52in+18n^2)\sigma(i)\sigma(n-i). }[/math]

Conjectures on τ(n)

Suppose that f is a weight-k integer newform and the Fourier coefficients a(n) are integers. Consider the problem:

Given that f does not have complex multiplication, do almost all primes p have the property that a(p) ≢ 0 (mod p)?

Indeed, most primes should have this property, and hence they are called ordinary. Despite the big advances by Deligne and Serre on Galois representations, which determine a(n) (mod p) for n coprime to p, it is unclear how to compute a(p) (mod p). The only theorem in this regard is Elkies' famous result for modular elliptic curves, which guarantees that there are infinitely many primes p such that a(p) = 0, which thus are congruent to 0 modulo p. There are no known examples of non-CM f with weight greater than 2 for which a(p) ≢ 0 (mod p) for infinitely many primes p (although it should be true for almost all p). There are also no known examples with a(p) ≡ 0 (mod p) for infinitely many p. Some researchers had begun to doubt whether a(p) ≡ 0 (mod p) for infinitely many p. As evidence, many provided Ramanujan's τ(p) (case of weight 12). The only solutions up to 1010 to the equation τ(p) ≡ 0 (mod p) are 2, 3, 5, 7, 2411, and 7758337633 (sequence A007659 in the OEIS).[10]

(Lehmer 1947) conjectured that τ(n) ≠ 0 for all n, an assertion sometimes known as Lehmer's conjecture. Lehmer verified the conjecture for n up to 214928639999 (Apostol 1997, p. 22). The following table summarizes progress on finding successively larger values of N for which this condition holds for all nN.

N reference
3316799 Lehmer (1947)
214928639999 Lehmer (1949)
1000000000000000 Serre (1973, p. 98), Serre (1985)
1213229187071998 Jennings (1993)
22689242781695999 Jordan and Kelly (1999)
22798241520242687999 Bosman (2007)
982149821766199295999 Zeng and Yin (2013)
816212624008487344127999 Derickx, van Hoeij, and Zeng (2013)

Ramanujan's L-function

Ramanujan's L-function is defined by

[math]\displaystyle{ L(s)=\sum_{n\ge 1}\frac{\tau (n)}{n^s} }[/math]

if [math]\displaystyle{ \Re s\gt 6 }[/math] and by analytic continuation otherwise. It satisfies the functional equation

[math]\displaystyle{ \frac{L(s)\Gamma (s)}{(2\pi)^s}=\frac{L(12-s)\Gamma(12-s)}{(2\pi)^{12-s}},\quad s\notin\mathbb{Z}_0^-, \,12-s\notin\mathbb{Z}_0^{-} }[/math]

and has the Euler product

[math]\displaystyle{ L(s)=\prod_{p\,\text{prime}}\frac{1}{1-\tau (p)p^{-s}+p^{11-2s}},\quad \Re s\gt 7. }[/math]

Ramanujan conjectured that all nontrivial zeros of [math]\displaystyle{ L }[/math] have real part equal to [math]\displaystyle{ 6 }[/math].

Notes

References