Iwasawa group

From HandWiki

In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G (Ballester-Bolinches Esteban-Romero).

Kenkichi Iwasawa (1941) proved that a p-group G is an Iwasawa group if and only if one of the following cases happens:

In (Berkovich Janko), Iwasawa's proof was deemed to have essential gaps, which were filled by Franco Napolitani and Zvonimir Janko. Roland Schmidt (1994) has provided an alternative proof along different lines in his textbook. As part of Schmidt's proof, he proves that a finite p-group is a modular group if and only if every subgroup is permutable, by (Schmidt 1994).

Every subgroup of a finite p-group is subnormal, and those finite groups in which subnormality and permutability coincide are called PT-groups. In other words, a finite p-group is an Iwasawa group if and only if it is a PT-group.[citation needed]

Examples

The Iwasawa group of order 16 is isomorphic to the modular maximal-cyclic group of order 16.[citation needed]

See also

Further reading

Both finite and infinite M-groups are presented in textbook form in (Schmidt 1994). Modern study includes (Zimmermann 1989).

References

  • Iwasawa, Kenkichi (1941), "Über die endlichen Gruppen und die Verbände ihrer Untergruppen", J. Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4: 171–199 
  • Iwasawa, Kenkichi (1943), "On the structure of infinite M-groups", Japanese Journal of Mathematics 18: 709–728, doi:10.4099/jjm1924.18.0_709 
  • Schmidt, Roland (1994), Subgroup Lattices of Groups, Expositions in Math, 14, Walter de Gruyter, doi:10.1515/9783110868647, ISBN 978-3-11-011213-9 
  • Zimmermann, Irene (1989), "Submodular subgroups in finite groups", Mathematische Zeitschrift 202 (4): 545–557, doi:10.1007/BF01221589 
  • Ballester-Bolinches, Adolfo; Esteban-Romero, Ramon; Asaad, Mohamed (2010), Products of Finite Groups, Walter de Gruyter, pp. 24–25, ISBN 978-3-11-022061-2 
  • Berkovich, Yakov; Janko, Zvonimir (2008), Groups of Prime Power Order, 2, Walter de Gruyter, ISBN 978-3-11-020823-8