Index set (computability)

From HandWiki
Short description: Classes of partial recursive functions

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

Definition

Let [math]\displaystyle{ \varphi_e }[/math] be a computable enumeration of all partial computable functions, and [math]\displaystyle{ W_{e} }[/math] be a computable enumeration of all c.e. sets.

Let [math]\displaystyle{ \mathcal{A} }[/math] be a class of partial computable functions. If [math]\displaystyle{ A = \{x \,:\, \varphi_{x} \in \mathcal{A} \} }[/math] then [math]\displaystyle{ A }[/math] is the index set of [math]\displaystyle{ \mathcal{A} }[/math]. In general [math]\displaystyle{ A }[/math] is an index set if for every [math]\displaystyle{ x,y \in \mathbb{N} }[/math] with [math]\displaystyle{ \varphi_x \simeq \varphi_y }[/math] (i.e. they index the same function), we have [math]\displaystyle{ x \in A \leftrightarrow y \in A }[/math]. Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.

Index sets and Rice's theorem

Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:

Let [math]\displaystyle{ \mathcal{C} }[/math] be a class of partial computable functions with its index set [math]\displaystyle{ C }[/math]. Then [math]\displaystyle{ C }[/math] is computable if and only if [math]\displaystyle{ C }[/math] is empty, or [math]\displaystyle{ C }[/math] is all of [math]\displaystyle{ \mathbb{N} }[/math].

Rice's theorem says "any nontrivial property of partial computable functions is undecidable".[1]

Completeness in the arithmetical hierarchy

Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a [math]\displaystyle{ \Sigma_n }[/math] set [math]\displaystyle{ A }[/math] is [math]\displaystyle{ \Sigma_n }[/math]-complete if, for every [math]\displaystyle{ \Sigma_n }[/math] set [math]\displaystyle{ B }[/math], there is an m-reduction from [math]\displaystyle{ B }[/math] to [math]\displaystyle{ A }[/math]. [math]\displaystyle{ \Pi_n }[/math]-completeness is defined similarly. Here are some examples:[2]

  • [math]\displaystyle{ \mathrm{Emp} = \{ e \,:\, W_e = \varnothing \} }[/math] is [math]\displaystyle{ \Pi_1 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Fin} = \{ e \,:\, W_e \text{ is finite} \} }[/math] is [math]\displaystyle{ \Sigma_2 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Inf} = \{ e \,:\, W_e \text{ is infinite} \} }[/math] is [math]\displaystyle{ \Pi_2 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Tot} = \{ e \,:\, \varphi_e \text{ is total} \} = \{ e : W_e = \mathbb{N} \} }[/math] is [math]\displaystyle{ \Pi_2 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Con} = \{ e \,:\, \varphi_e \text{ is total and constant} \} }[/math] is [math]\displaystyle{ \Pi_2 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Cof} = \{ e \,:\, W_e \text{ is cofinite} \} }[/math] is [math]\displaystyle{ \Sigma_3 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Rec} = \{ e \,:\, W_e \text{ is computable} \} }[/math] is [math]\displaystyle{ \Sigma_3 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Ext} = \{ e \,:\, \varphi_e \text{ is extendible to a total computable function} \} }[/math] is [math]\displaystyle{ \Sigma_3 }[/math]-complete.
  • [math]\displaystyle{ \mathrm{Cpl} = \{ e \,:\, W_e \equiv_\mathrm{T} \mathrm{HP} \} }[/math] is [math]\displaystyle{ \Sigma_4 }[/math]-complete, where [math]\displaystyle{ \mathrm{HP} }[/math] is the halting problem.

Empirically, if the "most obvious" definition of a set [math]\displaystyle{ A }[/math] is [math]\displaystyle{ \Sigma_n }[/math] [resp. [math]\displaystyle{ \Pi_n }[/math]], we can usually show that [math]\displaystyle{ A }[/math] is [math]\displaystyle{ \Sigma_n }[/math]-complete [resp. [math]\displaystyle{ \Pi_n }[/math]-complete].

Notes

  1. Odifreddi, P. G.. Classical Recursion Theory, Volume 1. ; page 151
  2. Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability (Berlin, Heidelberg: Springer Berlin Heidelberg): pp. 51–78, doi:10.1007/978-3-642-31933-4_3, ISBN 978-3-642-31932-7, http://dx.doi.org/10.1007/978-3-642-31933-4_3, retrieved 2021-04-21 

References

  • Odifreddi, P. G. (1992). Classical Recursion Theory, Volume 1. Elsevier. pp. 668. ISBN 0-444-89483-7. 
  • Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. MIT Press. pp. 482. ISBN 0-262-68052-1.