Gelman-Rubin statistic

From HandWiki

The Gelman-Rubin statistic allows a statement about the convergence of Monte Carlo simulations.

Definition

[math]\displaystyle{ J }[/math] Monte Carlo simulations (chains) are started with different initial values. The samples from the respective burn-in phases are discarded. From the samples [math]\displaystyle{ x_{1}^{(j)},\dots, x_{L}^{(j)} }[/math] (of the j-th simulation), the variance between the chains and the variance in the chains is estimated:

[math]\displaystyle{ \overline{x}_j=\frac{1}{L}\sum_{i=1}^L x_i^{(j)} }[/math] Mean value of chain j
[math]\displaystyle{ \overline{x}_*=\frac{1}{J}\sum_{j=1}^J \overline{x}_j }[/math] Mean of the means of all chains
[math]\displaystyle{ B=\frac{L}{J-1}\sum_{j=1}^J (\overline{x}_j-\overline{x}_*)^2 }[/math] Variance of the means of the chains
[math]\displaystyle{ W=\frac{1}{J} \sum_{j=1}^J \left(\frac{1}{L-1} \sum_{i=1}^L (x^{(j)}_i-\overline{x}_j)^2\right) }[/math] Averaged variances of the individual chains across all chains

An estimate of the Gelman-Rubin statistic [math]\displaystyle{ R }[/math] then results as[1]

[math]\displaystyle{ R=\frac{\frac{L-1}{L}W+\frac{1}{L}B}{W} }[/math].

When L tends to infinity and B tends to zero, R tends to 1.

Alternatives

The Geweke Diagnostic compares whether the mean of the first x percent of a chain and the mean of the last y percent of a chain match.[citation needed]

Literature

References