Erdős–Fuchs theorem

From HandWiki
Short description: On the number of ways numbers can be represented as sums of elements of an additive basis

In mathematics, in the area of additive number theory, the Erdős–Fuchs theorem is a statement about the number of ways that numbers can be represented as a sum of elements of a given additive basis, stating that the average order of this number cannot be too close to being a linear function.

The theorem is named after Paul Erdős and Wolfgang Heinrich Johannes Fuchs, who published it in 1956.[1]

Statement

Let [math]\displaystyle{ \mathcal{A}\subseteq\mathbb{N} }[/math] be an infinite subset of the natural numbers and [math]\displaystyle{ r_{\mathcal{A},h}(n) }[/math] its representation function, which denotes the number of ways that a natural number [math]\displaystyle{ n }[/math] can be expressed as the sum of [math]\displaystyle{ h }[/math] elements of [math]\displaystyle{ \mathcal{A} }[/math] (taking order into account). We then consider the accumulated representation function [math]\displaystyle{ s_{\mathcal{A},h}(x) := \sum_{n\leqslant x} r_{\mathcal{A},h}(n), }[/math] which counts (also taking order into account) the number of solutions to [math]\displaystyle{ k_1 + \cdots + k_h \leqslant x }[/math], where [math]\displaystyle{ k_1,\ldots,k_h \in \mathcal{A} }[/math]. The theorem then states that, for any given [math]\displaystyle{ c\gt 0 }[/math], the relation [math]\displaystyle{ s_{\mathcal{A},2}(n) = cn + o\left(n^{1/4}\log(n)^{-1/2} \right) }[/math] cannot be satisfied; that is, there is no [math]\displaystyle{ \mathcal{A}\subseteq\mathbb{N} }[/math] satisfying the above estimate.

Theorems of Erdős–Fuchs type

The Erdős–Fuchs theorem has an interesting history of precedents and generalizations. In 1915, it was already known by G. H. Hardy[2] that in the case of the sequence [math]\displaystyle{ \mathcal{Q}:=\{0,1,4,9,\ldots\} }[/math] of perfect squares one has [math]\displaystyle{ \limsup_{n\to +\infty} \frac{\left|s_{\mathcal{Q},2}(n)- \pi n\right|}{n^{1/4}\log(n)^{1/4}} \gt 0 }[/math] This estimate is a little better than that described by Erdős–Fuchs, but at the cost of a slight loss of precision, P. Erdős and W. H. J. Fuchs achieved complete generality in their result (at least for the case [math]\displaystyle{ h=2 }[/math]). Another reason this result is so celebrated may be due to the fact that, in 1941, P. Erdős and P. Turán[3] conjectured that, subject to the same hypotheses as in the theorem stated, the relation [math]\displaystyle{ s_{\mathcal{A},2}(n) = cn + O(1) }[/math] could not hold. This fact remained unproven until 1956, when Erdős and Fuchs obtained their theorem, which is even stronger than the previously conjectured estimate.

Improved versions for h = 2

This theorem has been extended in a number of different directions. In 1980, A. Sárközy[4] considered two sequences which are "near" in some sense. He proved the following:

  • Theorem (Sárközy, 1980). If [math]\displaystyle{ \mathcal{A} = \{a_1 \lt a_2 \lt \ldots\} }[/math] and [math]\displaystyle{ \mathcal{B} = \{b_1 \lt b_2 \lt \ldots\} }[/math] are two infinite subsets of natural numbers with [math]\displaystyle{ a_i - b_i = o\big(a_i ^{1/2}\log(a_i)^{-1} \big) }[/math], then [math]\displaystyle{ |\{(i,j):a_i+b_j \leqslant n\}| = cn + o\big(n^{1/4}\log(n)^{-1/2} \big) }[/math] cannot hold for any constant [math]\displaystyle{ c \gt 0 }[/math].

In 1990, H. L. Montgomery and R. C. Vaughan[5] were able to remove the log from the right-hand side of Erdős–Fuchs original statement, showing that [math]\displaystyle{ s_{\mathcal{A},2}(n) = cn + o(n^{1/4}) }[/math] cannot hold. In 2004, Gábor Horváth[6] extended both these results, proving the following:

  • Theorem (Horváth, 2004). If [math]\displaystyle{ \mathcal{A}=\{a_1\lt a_2\lt \ldots\} }[/math] and [math]\displaystyle{ \mathcal{B}=\{b_1\lt b_2\lt \ldots\} }[/math] are infinite subsets of natural numbers with [math]\displaystyle{ a_i-b_i = o\big(a_i^{1/2}\big) }[/math] and [math]\displaystyle{ |\mathcal{A}\cap[0,n]| - |\mathcal{B}\cap[0,n]| = O(1) }[/math], then [math]\displaystyle{ |\{(i,j):a_i+b_j \leqslant n\}| = cn + o\big(n^{1/4} \big) }[/math] cannot hold for any constant [math]\displaystyle{ c\gt 0 }[/math].

General case (h ≥ 2)

The natural generalization to Erdős–Fuchs theorem, namely for [math]\displaystyle{ h \geqslant 3 }[/math], is known to hold with same strength as the Montgomery–Vaughan's version. In fact, M. Tang[7] showed in 2009 that, in the same conditions as in the original statement of Erdős–Fuchs, for every [math]\displaystyle{ h \geqslant 2 }[/math] the relation [math]\displaystyle{ s_{\mathcal{A},h}(n) = cn + o(n^{1/4}) }[/math] cannot hold. In another direction, in 2002, Gábor Horváth[8] gave a precise generalization of Sárközy's 1980 result, showing that

  • Theorem (Horváth, 2002) If [math]\displaystyle{ \mathcal{A}^{(j)}=\{a^{(j)}_1\lt a^{(j)}_2\lt \ldots\} }[/math] ([math]\displaystyle{ j=1,\ldots,k }[/math]) are [math]\displaystyle{ k }[/math] (at least two) infinite subsets of natural numbers and the following estimates are valid:
  1. [math]\displaystyle{ a^{(1)}_i - a^{(2)}_i = o\big((a^{(1)}_i) ^{1/2}\log(a_i^{(1)})^{-k/2} \big) }[/math]
  2. [math]\displaystyle{ |\mathcal{A}^{(j)}\cap[0,n]| = \Theta\big(|\mathcal{A}^{(1)}\cap[0,n]|\big) }[/math] (for [math]\displaystyle{ j=3,\ldots,k }[/math])
then the relation:
[math]\displaystyle{ |\{(i_1,\ldots, i_k):a^{(1)}_{i_1}+\ldots+a^{(k)}_{i_k} \leqslant n,~ a^{(j)}_{i_j} \in \mathcal{A}^{(j)} (j =1,\ldots,k)\}| = cn + o\big(n^{1/4}\log(n)^{1-3k/4} \big) }[/math]
cannot hold for any constant [math]\displaystyle{ c \gt 0 }[/math].

Non-linear approximations

Yet another direction in which the Erdős–Fuchs theorem can be improved is by considering approximations to [math]\displaystyle{ s_{\mathcal{A},h}(n) }[/math] other than [math]\displaystyle{ cn }[/math] for some [math]\displaystyle{ c\gt 0 }[/math]. In 1963, Paul T. Bateman, Eugene E. Kohlbecker and Jack P. Tull[9] proved a slightly stronger version of the following:

  • Theorem (Bateman–Kohlbecker–Tull, 1963). Let [math]\displaystyle{ L(x) }[/math] be a slowly varying function which is either convex or concave from some point onward. Then, on the same conditions as in the original Erdős–Fuchs theorem, we cannot have [math]\displaystyle{ s_{\mathcal{A},2}(n) = nL(n) + o\big(n^{1/4}\log(n)^{-1/2}L(n)^\alpha \big) }[/math], where [math]\displaystyle{ \alpha = 3/4 }[/math] if [math]\displaystyle{ L(x) }[/math] is bounded, and [math]\displaystyle{ 1/4 }[/math] otherwise.

At the end of their paper, it is also remarked that it is possible to extend their method to obtain results considering [math]\displaystyle{ n^{\gamma} }[/math] with [math]\displaystyle{ \gamma \neq 1 }[/math], but such results are deemed as not sufficiently definitive.

See also

  • Erdős–Tetali theorem: For any [math]\displaystyle{ h \geq 2 }[/math], there is a set [math]\displaystyle{ \mathcal{A}\subseteq \mathbb{N} }[/math] which satisfies [math]\displaystyle{ r_{\mathcal{A},h}(n) = \Theta(\log(n)) }[/math]. (Existence of economical bases)
  • Erdős–Turán conjecture on additive bases: If [math]\displaystyle{ \mathcal{A}\subseteq\mathbb{N} }[/math] is an additive basis of order 2, then [math]\displaystyle{ r_{\mathcal{A},2}(n) \neq O(1) }[/math]. (Bases cannot be too economical)

References

  1. Erdős, P.; Fuchs, W. H. J. (1956). "On a Problem of Additive Number Theory". Journal of the London Mathematical Society 31 (1): 67–73. doi:10.1112/jlms/s1-31.1.67. 
  2. Hardy, G. H. (1915). "On the expression of a number as the sum of two squares". Quarterly Journal of Mathematics 46: 263–83. 
  3. Erdős, P.; Turán, P. (1941). "On a problem of Sidon in additive number theory, and some related problems". Journal of the London Mathematical Society. Series 1 16 (4): 212–215. doi:10.1112/jlms/s1-16.4.212. 
  4. Sárközy, András (1980). "On a theorem of Erdős and Fuchs". Acta Arithmetica 37: 333–338. doi:10.4064/aa-37-1-333-338. 
  5. Montgomery, H. L.; Vaughan, R. C. (1990). "On the Erdős–Fuchs theorem". in Baker, A; Bollobas, B; Hajnal, A. A tribute to Paul Erdős. Cambridge University Press. pp. 331–338. doi:10.1017/CBO9780511983917.025. ISBN 9780511983917. 
  6. Horváth, G. (2004). "An improvement of an extension of a theorem of Erdős and Fuchs". Acta Mathematica Hungarica 104: 27–37. doi:10.1023/B:AMHU.0000034360.41926.5a. 
  7. Tang, Min (2009). "On a generalization of a theorem of Erdős and Fuchs". Discrete Mathematics 309 (21): 6288–6293. doi:10.1016/j.disc.2009.07.006. 
  8. Horváth, Gábor (2002). "On a theorem of Erdős and Fuchs". Acta Arithmetica 103 (4): 321–328. doi:10.4064/aa103-4-2. Bibcode2002AcAri.103..321H. 
  9. Bateman, Paul T.; Kohlbecker, Eugene E.; Tull, Jack P. (1963). "On a theorem of Erdős and Fuchs in additive number theory". Proceedings of the American Mathematical Society 14 (2): 278–284. doi:10.1090/S0002-9939-1963-0144876-1. 

Further reading