Company:OmniAb, Inc.

From HandWiki
OmniAb, Inc.
TypePublic
Nasdaq: OABI
IndustryBiotechnology
Founder
  • P. Kay Wagoner, PhD
  • Jeff Leighton, PhD
  • Roland Buelow, PhD
  • Bill Harriman, PhD
  • Marie-Cecile van de Lavoir, DVM, PhD
  • Robert Etches, PhD
  • Bob Chen, PhD
  • Spencer Alford, PhD
  • Jennifer Cochran, PhD
  • Timothy Springer, PhD
  • Vaughn Smider, PhD
Headquarters
Emeryville, California
,
United States of America
Revenue$34.748 million (2021)
Number of employees
93 (2022)
Websitehttps://www.omniab.com/

OmniAb, Inc. is a publicly-traded biotechnology company that provides biopharmaceutical partners access to a technology platform for “pushing the forefront of therapeutic antibody discovery.” The platform combines proprietary transgenic animals – OmniRat, OmniMouse, OmniChicken, OmniFlic, and OmniClic – with high-throughput phenotypic screening technology, bioinformatics, next-generation sequencing (NGS), and functional characterization and developability services.[1][2]

OmniAb’s first transgenic animal, OmniRat, was launched in 2012, and OmniAb is headquartered in Emeryville, California.

Technology

OmniAb’s transgenic rodents, OmniRat and OmniMouse, have been engineered to express fully human immunoglobulin (Ig) light chain and chimeric immunoglobulin heavy chain, with a human variable domain fused to the rodent constant region.[3][4][5] Endogenous rodent Ig loci are inactivated in both OmniRat and OmniMouse. OmniRat models have been shown to yield high-affinity serum IgG following antigen immunization and undergo extensive somatic hypermutation similar to normal, wild-type rodents.[3]

OmniChickens were engineered to express Ig heavy and light chains with human variable and chicken constant regions.[6] Because chickens are more evolutionarily removed from humans than rodents, immunization with human antigens induces a more robust immune response and broader epitope coverage than in mouse models.[6][7][8] OmniChickens exhibit similar B-cell development and epitope coverage to wild-type chickens.[6][7]

OmniFlic and OmniClic are in vivo bispecific antibody discovery platforms with the same heavy chain format as OmniRat and OmniChicken, respectively. Both OmniFlic and OmniClic contain a fixed light chain, helping to solve the “pairing problem” commonly faced by bispecific antibody developers. Common light chains can be combined with heterodimeric heavy chains using knob-in-hole approaches, enabling the development of fully human, bispecific antibodies.[9]

OmniAb’s newest animal antibody discovery platforms include:

One of OmniAb’s high-throughput single B-cell analysis tools, the gel encapsulated microenvironment (GEM) assay, can screen B cells directly from immunized animals and detect affinities of low nanomolar or better.[10]

OmniAb’s other screening platform, xPloration, uses AI and high-throughput screening to identify antibodies for further development. The platform also enables downstream NGS analysis.

History

Open Monoclonal Technology, Inc. (Open Monoclonal Technology) was founded in 2008 and developed, validated, and commercialized the first generation of OmniRat in 2012. Crystal Bioscience, Inc. (Crystal Bioscience) was founded in 2008 with the goal of using chickens for the development of therapeutic antibodies. Using primordial germ cell technology, scientists at Crystal Bioscience created and validated OmniChickens for the development of fully human antibodies.[6][11][12][13]

Ligand Pharmaceuticals Incorporated (Ligand) acquired Open Monoclonal Technology and Crystal Bioscience in 2016 and 2017, respectively.[14] In 2019, Ligand acquired antigen design and preparation company Ab Initio Biotherapeutics, Inc.[15]

In 2020, Ligand acquired xCella Biosciences, Inc. and Taurus Biosciences, LLC to expand its single B-cell screening and discovery capabilities.[16][17]

In addition, the core assets of Icagen, Inc. were acquired by Ligand in 2020 to obtain drug discovery capabilities – including reagent generation and assays – for ion channels, transporters, and other membrane proteins.[18][19]

These assets were collectively spun off from Ligand in connection with the business combination between OmniAb and Avista Public Acquisition Corp. II, a publicly traded special purpose acquisition company (SPAC), to form an independent public company on November 1, 2022.[20] The combined company began regular trading on Nasdaq on November 2, 2022 under the stock ticker symbol “OABI.”

The company is currently led by CEO Matt Foehr and is governed by a noteworthy board of directors, which includes Jennifer Cochran, PhD, and the recent 2022 Nobel Prize in Chemistry co-recipient, Carolyn Bertozzi, PhD.[20]

Partnerships

On October 25, 2022, the Food and Drug Administration approved Tecvayli™ (teclistamab-cqyv), the first bispecific T-cell engager antibody for treating adults with relapsed or refractory multiple myeloma who have received at least four prior lines of therapy, which was discovered and developed by Janssen Pharmaceuticals using OmniAb’s OmniRat platform.[21] The bispecific antibody targets both B-cell maturation antigen and CD3. Tecvayli has also received conditional marketing authorization from the European Commission for treating adults with relapsed or refractory multiple myeloma who have received at least three prior therapies.

Another OmniAb partner, Gloria Biosciences, received regulatory approval from China’s National Medical Products Administration (NMPA) for zimberelimab, a fully human OmniAb-derived anti-PD-1 monoclonal antibody, on August 30, 2021. The antibody is approved in China to treat recurrent or refractory classical Hodgkin’s lymphoma.[22]

CStone Pharmaceuticals also received approval from the NMPA in China for Cejemly® (sugemalimab), an OmniAb-derived anti-PD-L1 monoclonal antibody for the first-line treatment of metastatic (stage IV) non-small cell lung cancer in combination with chemotherapy, as well as for patients with unresectable stage III non-small cell lung cancer whose disease has not progressed following concurrent or sequential platinum-based chemoradiotherapy.[23]

More than 65 companies, including Amgen, Boehringer Ingelheim, Genmab, Merck, Pfizer, Sanofi, and Takeda have access to OmniAb’s antibodies.

Research

OmniAb has presented its research and technology at scientific conferences and published scientific literature in numerous peer-reviewed journals:

  • Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases[5]
  • Characterization of immunoglobulin heavy chain knockout rats[4]
  • High-Affinity IgG Antibodies Develop Naturally in Ig-Knockout Rats Carrying Germline Human IgH/Igk/Igl Loci Bearing the Rat CH Region[3]
  • Harnessing gene conversion in chicken B cells to create a human antibody sequence repertoire[24]
  • Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells[12]
  • Human antibody expression in transgenic rats: Comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions[25]
  • Transgenic Animals Derived by DNA Microinjection[26]
  • Human Antibody Production in Transgenic Animals[27]
  • A Diverse Repertoire of Human Immunoglobulin Variable Genes in a Chicken B Cell Line is Generated by Both Gene Conversion and Somatic Hypermutation[28]
  • Inserting random and site-specific changes into the genome of chickens[29]
  • Generation of chickens expressing Cre recombinase[30]
  • Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ cells[31]
  • Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens[13]
  • Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms[7]
  • High-efficiency antibody discovery achieved with multiplexed microscopy[10]
  • Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies[32]
  • Generation of a highly diverse panel of antagonistic chicken monoclonal antibodies against the GIP receptor[33]
  • Bacterially derived synthetic mimetics of mammalian oligomannose prime antibody responses that neutralize HIV infectivity[34]
  • A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3[35]
  • Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies[36]
  • V(D)J Rearrangement Is Dispensable for Producing CDR-H3 Sequence Diversity in a Gene Converting Species[37]
  • Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets[6]
  • Production of Transgenic Chickens Using Cultured Primordial Germ Cells and Gonocytes[38]
  • Discovery of high affinity, pan-allelic, and pan- mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα[39]
  • Complementary epitopes and favorable developability of monoclonal anti-LAMP1 antibodies generated using two transgenic animal platforms[40]
  • OmniChicken® and OmniClic™: Engineering antibody diversity in vivo through transgene design[41]
  • OmniFlic and OmniClic: Transgenic Rat and Chicken Platforms for Human Bispecific Antibody Discovery[42]
  • Ab Initio Antigen Technology[43]
  • Benchmarking discovery-stage antibodies from OmniChicken® (against clinical-stage antibodies from other sources)[44]
  • OmniTaur™: Ultralong CDR3 cow antibodies for challenging targets[45]
  • Expression of human lambda expands the repertoire of OmniChickens[46]
  • Comparisons of the antibody repertoires of a humanized rodent and humans by high throughput sequencing[47]
  • Common light chain chickens produce human antibodies of high affinity and broad epitope coverage for the engineering of bispecifics[48]
  • Antibody Discovery Powered by OmniAb[49]
  • Chicken Heavy Chain only antibodies to SARS-CoV2[50]
  • Discovery, Expression, and Characterization of Neutralizing Picobodies against SARS-CoV2[51]
  • Nucleic acid delivery of immune-focused SARS-CoV2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection[52]
  • High-Specificity OmniAb Antibodies for Bispecific Applications[53]
  • Opening The Barn Door To Antibody Diversity[54]

References

  1. "Antibody Discovery Technology" (in en-US). https://www.omniab.com/. 
  2. "Ligand's New Antibody Business Prepares to Hit the Nasdaq" (in en-US). https://www.biospace.com/article/ligand-spins-off-omniab-business-prepares-to-head-to-nasdaq/. 
  3. 3.0 3.1 3.2 Osborn, Michael J.; Ma, Biao; Avis, Suzanne; Binnie, Ashleigh; Dilley, Jeanette; Yang, Xi; Lindquist, Kevin; Ménoret, Séverine et al. (2013-02-15). "High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region". Journal of Immunology 190 (4): 1481–1490. doi:10.4049/jimmunol.1203041. ISSN 1550-6606. PMID 23303672. 
  4. 4.0 4.1 Ménoret, Séverine; Iscache, Anne-L.; Tesson, Laurent; Rémy, Séverine; Usal, Claire; Osborn, Michel J.; Cost, Gregory J.; Brüggemann, Marianne et al. (9 September 2010). "Characterization of immunoglobulin heavy chain knockout rats" (in en). European Journal of Immunology 40 (10): 2932–2941. doi:10.1002/eji.201040939. PMID 21038471. https://onlinelibrary.wiley.com/doi/10.1002/eji.201040939. 
  5. 5.0 5.1 Geurts, Aron M.; Cost, Gregory J.; Freyvert, Yevgeniy; Zeitler, Bryan; Miller, Jeffrey C.; Choi, Vivian M.; Jenkins, Shirin S.; Wood, Adam et al. (2009-07-24). "Knockout rats via embryo microinjection of zinc-finger nucleases". Science 325 (5939): 433. doi:10.1126/science.1172447. ISSN 1095-9203. PMID 19628861. Bibcode2009Sci...325..433G. 
  6. 6.0 6.1 6.2 6.3 6.4 Ching, Kathryn H.; Collarini, Ellen J.; Abdiche, Yasmina N.; Bedinger, Daniel; Pedersen, Darlene; Izquierdo, Shelley; Harriman, Rian; Zhu, Lei et al. (2018-01-02). "Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets". mAbs 10 (1): 71–80. doi:10.1080/19420862.2017.1386825. ISSN 1942-0862. PMID 29035625. PMC 5800366. https://doi.org/10.1080/19420862.2017.1386825. 
  7. 7.0 7.1 7.2 Abdiche, Yasmina Noubia; Harriman, Rian; Deng, Xiaodi; Yeung, Yik Andy; Miles, Adam; Morishige, Winse; Boustany, Leila; Zhu, Lei et al. (2015-12-14). "Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms". mAbs 8 (2): 264–277. doi:10.1080/19420862.2015.1118596. ISSN 1942-0862. PMID 26652308. 
  8. Vuksanaj, Kathy (2019-05-01). "A Therapeutic Antibody Characterization Trinity Accelerates Drug Development" (in en-US). https://www.genengnews.com/sponsored/a-therapeutic-antibody-characterization-trinity-accelerates-drug-development/. 
  9. Gera, Nimish (2022-08-03). "The evolution of bispecific antibodies". Expert Opinion on Biological Therapy 22 (8): 945–949. doi:10.1080/14712598.2022.2040987. ISSN 1471-2598. PMID 35147061. https://doi.org/10.1080/14712598.2022.2040987. 
  10. 10.0 10.1 Mettler Izquierdo, Shelley; Varela, Stephanie; Park, Minha; Collarini, Ellen J.; Lu, Daniel; Pramanick, Shreya; Rucker, Joseph; Lopalco, Lucia et al. (August 2016). "High-efficiency antibody discovery achieved with multiplexed microscopy". Microscopy 65 (4): 341–352. doi:10.1093/jmicro/dfw014. ISSN 2050-5698. PMID 27107009. 
  11. van de Lavoir, Marie-Cecile; Diamond, Jennifer H.; Leighton, Philip A.; Mather-Love, Christine; Heyer, Babette S.; Bradshaw, Renee; Kerchner, Allyn; Hooi, Lisa T. et al. (2006-06-08). "Germline transmission of genetically modified primordial germ cells". Nature 441 (7094): 766–769. doi:10.1038/nature04831. ISSN 1476-4687. PMID 16760981. Bibcode2006Natur.441..766V. https://pubmed.ncbi.nlm.nih.gov/16760981/. 
  12. 12.0 12.1 Schusser, Benjamin; Collarini, Ellen J.; Yi, Henry; Izquierdo, Shelley Mettler; Fesler, Jeffrey; Pedersen, Darlene; Klasing, Kirk C.; Kaspers, Bernd et al. (2013-12-10). "Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells". Proceedings of the National Academy of Sciences of the United States of America 110 (50): 20170–20175. doi:10.1073/pnas.1317106110. ISSN 1091-6490. PMID 24282302. Bibcode2013PNAS..11020170S. 
  13. 13.0 13.1 Schusser, Benjamin; Collarini, Ellen J.; Pedersen, Darlene; Yi, Henry; Ching, Kathryn; Izquierdo, Shelley; Thoma, Theresa; Lettmann, Sarah et al. (September 2016). "Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens". European Journal of Immunology 46 (9): 2137–2148. doi:10.1002/eji.201546171. ISSN 1521-4141. PMID 27392810. 
  14. (in en) Three-species platform optimizes the discovery of diverse fully human antibodies. https://www.nature.com/articles/d43747-020-00677-1. 
  15. "Ligand Acquires Ab Initio Biotherapeutics, an Antigen-Discovery Company" (in en). 2019-07-23. https://www.businesswire.com/news/home/20190723005940/en/Ligand-Acquires-Ab-Initio-Biotherapeutics-an-Antigen-Discovery-Company. 
  16. "Ligand Expands OmniAb® Antibody Discovery Platform Through the Acquisitions of xCella Biosciences and Taurus Biosciences" (in en). 2020-09-10. https://www.businesswire.com/news/home/20200910005303/en/Ligand-Expands-OmniAb%C2%AE-Antibody-Discovery-Platform-Through-the-Acquisitions-of-xCella-Biosciences-and-Taurus-Biosciences. 
  17. "Ligand Expands OmniAb® Antibody Discovery Platform Through the Acquisitions of xCella Biosciences and Taurus Biosciences" (in en). 2020-09-10. https://www.businesswire.com/news/home/20200910005303/en/Ligand-Expands-OmniAb%C2%AE-Antibody-Discovery-Platform-Through-the-Acquisitions-of-xCella-Biosciences-and-Taurus-Biosciences. 
  18. "Ligand Completes Acquisition of Icagen Core Assets, Partnered Programs and Ion Channel Technologies :: Ligand Pharmaceuticals Incorporated (LGND)". https://investor.ligand.com/press-releases/detail/409/ligand-completes-acquisition-of-icagen-core-assets. 
  19. Ph.D, Doug Krafte. "Enabling Drug Discovery Targeting Ion Channels" (in en-us). https://www.pharmasalmanac.com/articles/enabling-drug-discovery-targeting-ion-channels. 
  20. 20.0 20.1 "OmniAb Announces Completion of Spin-Off and Business Combination" (in en-US). https://investors.omniab.com/investors/news/news-details/2022/OmniAb-Announces-Completion-of-Spin-Off-and-Business-Combination/default.aspx. 
  21. "U.S. FDA Approves TECVAYLI™ (teclistamab-cqyv), the First Bispecific T-cell Engager Antibody for the Treatment of Patients with Relapsed or Refractory Multiple Myeloma | Johnson & Johnson" (in en). https://www.jnj.com/u-s-fda-approves-tecvayli-teclistamab-cqyv-the-first-bispecific-t-cell-engager-antibody-for-the-treatment-of-patients-with-relapsed-or-refractory-multiple-myeloma. 
  22. "Ligand's Partner Gloria Biosciences Receives Approval in China for Zimberelimab for the Treatment of Recurrent or Refractory" (in en). Bloomberg.com. 2021-08-30. https://www.bloomberg.com/press-releases/2021-08-30/ligand-s-partner-gloria-biosciences-receives-approval-in-china-for-zimberelimab-for-the-treatment-of-recurrent-or-refractory. 
  23. "Ligand's Partner CStone Pharmaceuticals Receives Approval in China for Sugemalimab (Cejemly®) for the First-Line Treatment of Advanced Non-Small Cell Lung Cancer in Combination with Chemotherapy :: Ligand Pharmaceuticals Incorporated (LGND)". https://www.ligand.com/news-events/press-releases/detail/457/ligands-partner-cstone-pharmaceuticals-receives-approval. 
  24. Schusser, Benjamin; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley Mettler; Harriman, William D.; Etches, Robert J.; Leighton, Philip A. (2013-11-21). "Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire" (in en). PLOS ONE 8 (11): e80108. doi:10.1371/journal.pone.0080108. ISSN 1932-6203. PMID 24278246. Bibcode2013PLoSO...880108S. 
  25. Ma, Biao; Osborn, Michael J.; Avis, Suzanne; Ouisse, Laure-Hélène; Ménoret, Séverine; Anegon, Ignacio; Buelow, Roland; Brüggemann, Marianne (2013-12-31). "Human antibody expression in transgenic rats: Comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions" (in en). Journal of Immunological Methods 400-401: 78–86. doi:10.1016/j.jim.2013.10.007. ISSN 0022-1759. PMID 24184135. https://www.sciencedirect.com/science/article/pii/S0022175913002871. 
  26. Brüggemann, Marianne; Osborn, Michael J.; Ma, Biao; Avis, Suzanne; Anegon, Ignacio; Buelow, Roland (2014-08-12), Dübel, Stefan; Reichert, Janice M., eds., "Transgenic Animals Derived by DNA Microinjection" (in en), Handbook of Therapeutic Antibodies (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA): pp. 77–88, doi:10.1002/9783527682423.ch4, ISBN 978-3-527-68242-3, https://onlinelibrary.wiley.com/doi/10.1002/9783527682423.ch4, retrieved 2023-02-03 
  27. Brüggemann, Marianne; Osborn, Michael J.; Ma, Biao; Hayre, Jasvinder; Avis, Suzanne; Lundstrom, Brian; Buelow, Roland (2015). "Human Antibody Production in Transgenic Animals". Archivum Immunologiae et Therapiae Experimentalis 63 (2): 101–108. doi:10.1007/s00005-014-0322-x. ISSN 0004-069X. PMID 25467949. 
  28. Leighton, Philip A.; Schusser, Benjamin; Yi, Henry; Glanville, Jacob; Harriman, William (2015). "A Diverse Repertoire of Human Immunoglobulin Variable Genes in a Chicken B Cell Line is Generated by Both Gene Conversion and Somatic Hypermutation". Frontiers in Immunology 6: 126. doi:10.3389/fimmu.2015.00126. ISSN 1664-3224. PMID 25852694. 
  29. Collarini, Ellen; Leighton, Philip; Pedersen, Darlene; Harriman, Bill; Jacob, Roy; Mettler-Izquierdo, Shelley; Yi, Henry; van de Lavoir, Marie-Cecile et al. (April 2015). "Inserting random and site-specific changes into the genome of chickens". Poultry Science 94 (4): 799–803. doi:10.3382/ps.2014-4372. ISSN 0032-5791. PMID 25828572. https://pubmed.ncbi.nlm.nih.gov/25828572/. 
  30. Leighton, Philip A.; Pedersen, Darlene; Ching, Kathryn; Collarini, Ellen J.; Izquierdo, Shelley; Jacob, Roy; van de Lavoir, Marie-Cecile (October 2016). "Generation of chickens expressing Cre recombinase". Transgenic Research 25 (5): 609–616. doi:10.1007/s11248-016-9952-6. ISSN 1573-9368. PMID 27034267. 
  31. Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H.; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley; Lavoir, Marie-Cecile van de; Leighton, Philip A. (2016-04-21). "Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells" (in en). PLOS ONE 11 (4): e0154303. doi:10.1371/journal.pone.0154303. ISSN 1932-6203. PMID 27099923. Bibcode2016PLoSO..1154303D. 
  32. Ouisse, Laure-Hélène; Gautreau-Rolland, Laetitia; Devilder, Marie-Claire; Osborn, Michael; Moyon, Melinda; Visentin, Jonathan; Halary, Frank; Bruggemann, Marianne et al. (2017-01-09). "Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies". BMC Biotechnology 17 (1): 3. doi:10.1186/s12896-016-0322-5. ISSN 1472-6750. PMID 28081707. PMC 5234254. https://doi.org/10.1186/s12896-016-0322-5. 
  33. Könitzer, Jennifer D.; Pramanick, Shreya; Pan, Qi; Augustin, Robert; Bandholtz, Sebastian; Harriman, William; Izquierdo, Shelley (2017-04-03). "Generation of a highly diverse panel of antagonistic chicken monoclonal antibodies against the GIP receptor". mAbs 9 (3): 536–549. doi:10.1080/19420862.2016.1276683. ISSN 1942-0862. PMID 28055305. PMC 5384726. https://doi.org/10.1080/19420862.2016.1276683. 
  34. Pantophlet, Ralph; Trattnig, Nino; Murrell, Sasha; Lu, Naiomi; Chau, Dennis; Rempel, Caitlin; Wilson, Ian A.; Kosma, Paul (2017-11-17). "Bacterially derived synthetic mimetics of mammalian oligomannose prime antibody responses that neutralize HIV infectivity" (in en). Nature Communications 8 (1): 1601. doi:10.1038/s41467-017-01640-y. ISSN 2041-1723. PMID 29150603. Bibcode2017NatCo...8.1601P. 
  35. Bednenko, Janna; Harriman, Rian; Mariën, Lore; Nguyen, Hai M.; Agrawal, Alka; Papoyan, Ashot; Bisharyan, Yelena; Cardarelli, Joanna et al. (2018-05-19). "A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3". mAbs 10 (4): 636–650. doi:10.1080/19420862.2018.1445451. ISSN 1942-0862. PMID 29494279. PMC 5973702. https://doi.org/10.1080/19420862.2018.1445451. 
  36. Harris, Katherine E.; Aldred, Shelley Force; Davison, Laura M.; Ogana, Heather Anne N.; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao et al. (2018-04-24). "Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies". Frontiers in Immunology 9: 889. doi:10.3389/fimmu.2018.00889. ISSN 1664-3224. PMID 29740455. 
  37. Leighton, Philip A.; Morales, Jacqueline; Harriman, William D.; Ching, Kathryn H. (2018). "V(D)J Rearrangement Is Dispensable for Producing CDR-H3 Sequence Diversity in a Gene Converting Species". Frontiers in Immunology 9: 1317. doi:10.3389/fimmu.2018.01317. ISSN 1664-3224. PMID 29951062. 
  38. Collarini, Ellen J.; Leighton, Philip A.; Van de Lavoir, Marie-Cecile (2019). "Production of Transgenic Chickens Using Cultured Primordial Germ Cells and Gonocytes". Microinjection. Methods in Molecular Biology (Clifton, N.J.). 1874. pp. 403–430. doi:10.1007/978-1-4939-8831-0_24. ISBN 978-1-4939-8830-3. https://pubmed.ncbi.nlm.nih.gov/30353528/. 
  39. Sim, Janet; Sockolosky, Jonathan T.; Sangalang, Emma; Izquierdo, Shelley; Pedersen, Darlene; Harriman, William; Wibowo, Ardian S.; Carter, Josh et al. (2019). "Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα". mAbs 11 (6): 1036–1052. doi:10.1080/19420862.2019.1624123. ISSN 1942-0870. PMID 31257988. 
  40. Cameron, Beatrice; Dabdoubi, Tarik; Berthou-Soulié, Laurence; Gagnaire, Marie; Arnould, Isabelle; Severac, Anne; Soubrier, Fabienne; Morales, Jacqueline et al. (2020-07-16). "Complementary epitopes and favorable developability of monoclonal anti-LAMP1 antibodies generated using two transgenic animal platforms" (in en). PLOS ONE 15 (7): e0235815. doi:10.1371/journal.pone.0235815. ISSN 1932-6203. PMID 32673351. Bibcode2020PLoSO..1535815C. 
  41. Ching, Kathryn. "OmniChicken® and OmniClic™: Engineering antibody diversity in vivo through transgene design". https://d1io3yog0oux5.cloudfront.net/_0dedef76635b0a9b63e7429e49a3b414/omniab/db/255/915/pdf/Ching+DOT+2019.pdf. 
  42. Iffland, Christel; Ching, Kathryn. "OmniFlic and OmniClic: Transgenic Rat and Chicken Platforms for Human Bispecific Antibody Discovery". https://d1io3yog0oux5.cloudfront.net/_0dedef76635b0a9b63e7429e49a3b414/omniab/db/255/916/pdf/World+Bispecific+Summit+2019v2.pdf. 
  43. Burg, John. "Ab Initio Antigen Technology". https://d1io3yog0oux5.cloudfront.net/_0dedef76635b0a9b63e7429e49a3b414/omniab/db/255/918/pdf/Burg+AET+2019.pdf. 
  44. Harriman, Bill; Izquierdo, Shelley. "Benchmarking discovery-stage antibodies from OmniChicken® (against clinical-stage antibodies from other sources)". https://d1io3yog0oux5.cloudfront.net/_0dedef76635b0a9b63e7429e49a3b414/omniab/db/255/917/pdf/OmniAb+AET+Dec+10+2019.pdf. 
  45. Smider, Vaughn. "OmniTaur™: Ultralong CDR3 Cow Antibodies for Challenging Targets". https://www.omniab.com/wp-content/uploads/2022/11/2020-OmniTaur-Presentation.pdf. 
  46. Ching, Kathryn H.; Berg, Kimberley; Morales, Jacqueline; Pedersen, Darlene; Harriman, William D.; Abdiche, Yasmina N.; Leighton, Philip A. (2020-01-29). "Expression of human lambda expands the repertoire of OmniChickens" (in en). PLOS ONE 15 (1): e0228164. doi:10.1371/journal.pone.0228164. ISSN 1932-6203. PMID 31995598. Bibcode2020PLoSO..1528164C. 
  47. Joyce, Collin; Burton, Dennis R.; Briney, Bryan (2020-01-24). "Comparisons of the antibody repertoires of a humanized rodent and humans by high throughput sequencing" (in en). Scientific Reports 10 (1): 1120. doi:10.1038/s41598-020-57764-7. ISSN 2045-2322. PMID 31980672. Bibcode2020NatSR..10.1120J. 
  48. Ching, Kathryn H.; Berg, Kimberley; Reynolds, Kevin; Pedersen, Darlene; Macias, Alba; Abdiche, Yasmina N.; Harriman, William D.; Leighton, Philip A. (2021-01-01). "Common light chain chickens produce human antibodies of high affinity and broad epitope coverage for the engineering of bispecifics". mAbs 13 (1): 1862451. doi:10.1080/19420862.2020.1862451. ISSN 1942-0862. PMID 33491549. PMC 7849766. https://doi.org/10.1080/19420862.2020.1862451. 
  49. Harriman, Bill. "Antibody Discovery Powered by OmniAb". https://www.omniab.com/wp-content/uploads/2022/01/AET_2021_Harriman.pdf. 
  50. Leighton, Phil. "Chicken Heavy Chain only antibodies to SARS-CoV2". https://www.omniab.com/wp-content/uploads/2022/01/Leighton-AET-2021.pdf. 
  51. Smider, Vaughn. "Discovery, Expression, and Characterization of Neutralizing Picobodies against SARS-CoV2". https://www.omniab.com/wp-content/uploads/2022/01/Picobodies_AET_121321.pdf. 
  52. Konrath, Kylie M.; Liaw, Kevin; Wu, Yuanhan; Zhu, Xizhou; Walker, Susanne N.; Xu, Ziyang; Schultheis, Katherine; Chokkalingam, Neethu et al. (2022-02-01). "Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection". Cell Reports 38 (5): 110318. doi:10.1016/j.celrep.2022.110318. ISSN 2211-1247. PMID 35090597. 
  53. Iffland, Christel. "High-Specificity OmniAb Antibodies for Bispecific Applications". https://www.omniab.com/wp-content/uploads/2022/11/2022-World-Bispecific-Conference-OmniAb-Inc.-Presentation.pdf. 
  54. Harriman, Bill. "Opening The Barn Door To Antibody Diversity". https://www.omniab.com/wp-content/uploads/2022/12/AET-2022-Harriman.pdf.