Chemistry:Silicide carbide

From HandWiki

Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

Related compounds include the germanide carbides, phosphide silicides, boride carbides and nitride carbides. Other related compounds may contain more condensed anion combinations such as the carbidonitridosilicates with C(SiN3)4 with N bridging between two silicon atoms.[1]

Production

Silicide carbide compounds can be made by heating silicon, graphite, and metal together. It is important to exclude oxygen before and during the reaction.[2] The flux method involves a reaction in a molten metal. Gallium is suitable, because it dissolves carbon and silicon, but does not react with them.[3]

Properties

Silicide carbides are a kind of ceramic, yet they also have metallic properties. They are not as brittle as most ceramics, but are stiffer than metals. They have high melting temperatures.[4]

In air silicide carbide compounds are stable, and are hardly affected by water. The appearance is often metallic grey. When powdered the colour is dark grey.[5]

When ErFe2SiC is dissolved in acid, mostly methane is produced, but the products include some hydrocarbons with two and three carbon atoms.[5]

The lanthanide contraction is evident with the cell sizes for rare earth element silicide carbides.[5]

List

formula system space group unit cell Å volume density comment ref
Ti3SiC2 hexagonal P63/mmc a = 3.064 c = 17.65 Z=2 143.5 4.53 mp 2300°C [6]
Ti5Si3Cx [4]
Y3Si2C2 orthorhombic Cmmm a=3.845 b=15.634 c=4.213 253.3 Pauli paramagnetic

grey metallic air stable

[7]
Y5Si3C1.8 [8]
Y1.8C2Si8(B12)3 rhombohedral R3m a=10.101, c=16.441, Z=3 1452.7 1.551 [3]
YCr2Si2C tetragonal P4/mmm a=3.998 c=5.289 Z=1 Pauli paramagnetic

grey metallic

[9]
YCr3Si2C [10]
YMn2SiC orthorhombic Cmcm Z=4 [11]
YFe2SiC orthorhombic Cmcm Z=4 270 grey metallic

air stable

[5]
YRu2SiC orthorhombic Cmcm Z=4 [11]
Ba3Si4C2 tetragonal I4/mcm a = 8.7693 c = 12.3885 semiconductor; contains [Si4]4− and [C2]2− [12]
La3Si2C2 orthorhombic Cmmm a=4.039,b=16.884, and c=4.506 307.3 grey metallic

air stable

[7]
LaCr2Si2C tetragonal P4/mmm a=4.037 c=5.347 Z=1 [9]
La2Fe2Si2C monoclinic C2/m Z=2 [13]
Ce3Si2C2 orthorhombic Cmmm a=3.990 b=16.592 c= 4.434 293.5 grey metallic

air stable

?ferromagnetic (TC=10K

[7]
CeCr2Si2C tetragonal P4/mmm a=4.020 c=5.284 Z=1 grey metallic [9]
Ce2Fe2Si2C monoclinic C2/m Z=2 [13]
CeMo2Si2C [14]
CeRu2SiC orthorhombic Cmcm Z=4 [11]
Pr3Si2C2 orthorhombic Cmmm a=3.967 b=16.452 c=4.399 287.1 grey metallic

air stable

ferromagnetic TC=25K

[7]
PrCr2Si2C tetragonal P4/mmm a=4.022, c = 5.352 Z=1 86.58 6.00 grey metallic

Si-Si pair bond 2.453 Å

[9]
PrMo2Si2C tetragonal P4/mmm a=4.2139 c=5.4093 Z=1 96.1 metallic dark grey [15]
PrRu2SiC orthorhombic Cmcm Z=4 [11]
Nd3Si2C2 orthorhombic Cmmm a=3.949 b=16.303 c=4.375 281.7 grey metallic

air stable

ferromagnetic TC=30K

[7]
NdCr2Si2C tetragonal P4/mmm a=4.026 c=5.336 Z=1 grey metallic [9]
NdRu2SiC orthorhombic Cmcm Z=4 [11]
Sm3Si2C2 orthorhombic Cmmm a=3.913 b=16.073 c=4.316 271.4 grey metallic

air stable

antiferromagnetic TN=19K

[7]
SmCr2Si2C tetragonal P4/mmm a=4.011 c=5.321 Z=1 grey metallic [9]
SmMn2SiC orthorhombic Cmcm Z=4 [11]
SmFe2SiC orthorhombic Cmcm Z=4 278 grey metallic

air stable

[5]
Sm2Fe2Si2C monoclinic C2/m Z=2 [13]
SmRu2SiC orthorhombic Cmcm Z=4 [11]
Gd3Si2C2 orthorhombic Cmmm a=3.886 b=15.863 c=4.726 grey metallic

air stable

antiferromagnetic TN=50K

[7]
GdCr2Si2C tetragonal P4/mmm a=4.007 c=5.324 Z=1 263.6 grey metallic [9]
GdCr3Si2C hexagonal P6/mmm [10]
GdMn2SiC orthorhombic Cmcm Z=4 [11]
GdFe2SiC orthorhombic Cmcm Z=4 273 grey metallic

air stable

[5]
GdRu2SiC orthorhombic Cmcm a = 3.830, b = 11.069, c = 7.157 Z=4 303.4 8.745 silvery

air stable

[11][16]
Tb3Si2C2 orthorhombic Cmmm a=3.854 c=15.702 c=4.236 256.3 grey metallic

air stable

antiferromagnetic TN=28K

[7]
Tb1.8C2Si8(B12)3 rhombohedral R3m a=10.1171, c=16.397, Z=3 1453.4 1.583 [3]
TbCr2Si2C tetragonal P4/mmm a=4.002 c=5.314 Z=1 grey metallic [9]
TbCr3Si2C hexagonal P6/mmm [10]
TbMn2SiC orthorhombic Cmcm Z=4 [11]
TbFe2SiC orthorhombic Cmcm Z=4 270 grey metallic

air stable

[5]
TbRu2SiC orthorhombic Cmcm Z=4 [11]
Dy3Si2C2 orthorhombic Cmmm a=3.838 b=15.611 c=4.203 251.8 grey metallic

air stable

antiferromagnetic TN=30K

[7]
DyCr2Si2C tetragonal P4/mmm a=3.999 c=5.306 Z=1 grey metallic [9]
DyCr3Si2C hexagonal P6/mmm [10]
DyMn2SiC orthorhombic Cmcm Z=4 [11]
Dy2Fe2Si2C monoclinic C2/m grey metallic

air stable

[7]
DyFe2SiC orthorhombic Cmcm Z=4 269 grey metallic

air stable

[17]
DyRu2SiC orthorhombic Cmcm Z=4 [11]
Ho3Si2C2 orthorhombic Cmmm a=3.828 b=15.507 c=4.189 248.7 grey metallic

air stable

metamagnetic TN=14K

[7]
HoCr2Si2C tetragonal P4/mmm a=3.996 c=5.274 Z=1 grey metallic [9]
HoCr3Si2C hexagonal P6/mmm [10]
HoMn2SiC orthorhombic Cmcm Z=4 [11]
HoFe2SiC orthorhombic Cmcm Z=4 267 grey metallic

air stable

[5]
HoRu2SiC orthorhombic Cmcm Z=4 [11]
Er3Si2C2 orthorhombic Cmmm a=3.811 b=15.420 c=4.172 245.2 grey metallic

air stable

metamagnetic

[7]
Er1.8C2Si8(B12)3 rhombohedral R3m a=10.0994, c=16.354, Z=3 1444.6 1.619 [3]
ErCr3Si2C hexagonal P6/mmm [10]
ErMn2SiC orthorhombic Cmcm Z=4 [11]
ErFe2SiC orthorhombic Cmcm Z=4 265 grey metallic

air stable

[5]
ErRu2SiC orthorhombic Cmcm Z=4 [11]
Tm3Si2C2 orthorhombic Cmmm a=3.796, b=15.328, c=4.145 grey metallic

air stable

metamagnetic

[7]
TmCr3Si2C hexagonal P6/mmm [10]
TmMn2SiC orthorhombic Cmcm Z=4 [11]
TmFe2SiC orthorhombic Cmcm Z=4 263 grey metallic

air stable

[5]
Tm2Fe2Si2C monoclinic C2/m a = 10.497, b = 3.882, c = 6.646, β = 128.96° antiferromagnetic at TN = 2.7 K

metallic

[17]
TmRu2SiC orthorhombic Cmcm Z=4 [11]
LuCr3Si2C hexagonal P6/mmm [10]
LuMn2SiC orthorhombic Cmcm Z=4 [11]
LuFe2SiC orthorhombic Cmcm Z=4 261 grey metallic

air stable

[5]
Lu2Fe2Si2C monoclinic C2/m Pauli paramagnetic

metallic

[17]
YRe2SiC orthorhombic Cmcm Z=4 superconductor Tc ≈ 5.9 K [11][18]
Y2Re2Si2C monoclinic C2/m Z=2 [13]
La2Re2Si2C monoclinic C2/m Z=2 [13]
CeRe2SiC orthorhombic Cmcm Z=4 [11]
Ce2Re2Si2C monoclinic C2/m Z=2 [13]
PrRe2SiC orthorhombic Cmcm Z=4 [11]
NdRe2SiC orthorhombic Cmcm Z=4 [11]
Nd2Re2Si2C monoclinic C2/m Z=2 [13]
SmRe2SiC orthorhombic Cmcm Z=4 [11]
Sm2Re2Si2C monoclinic C2/m Z=2 [13]
GdRe2SiC orthorhombic Cmcm Z=4 [11]
Gd2Re2Si2C monoclinic C2/m Z=2 [13]
TbRe2SiC orthorhombic Cmcm Z=4 [11]
Tb2Re2Si2C monoclinic C2/m Z=2 [13]
DyRe2SiC orthorhombic Cmcm Z=4 [11]
Dy2Re2Si2C monoclinic C2/m Z=2 [13]
HoRe2SiC orthorhombic Cmcm Z=4 [11]
Ho2Re2Si2C monoclinic C2/m Z=2 [13]
ErRe2SiC orthorhombic Cmcm Z=4 [11]
Er2Re2Si2C monoclinic C2/m Z=2 [13]
TmRe2SiC orthorhombic Cmcm Z=4 [11]
YOs2SiC orthorhombic Cmcm Z=4 [11]
LaOs2SiC orthorhombic Cmcm Z=4 [11]
CeOs2SiC orthorhombic Cmcm Z=4 [11]
PrOs2SiC orthorhombic Cmcm a=3.9602,b=11.058,c=7.172 Z=4 [11]
NdOs2SiC orthorhombic Cmcm Z=4 [11]
SmOs2SiC orthorhombic Cmcm Z=4 [11]
GdOs2SiC orthorhombic Cmcm Z=4 [11]
TbOs2SiC orthorhombic Cmcm Z=4 [11]
DyOs2SiC orthorhombic Cmcm Z=4 [11]
HoOs2SiC orthorhombic Cmcm Z=4 [11]
ErOs2SiC orthorhombic Cmcm Z=4 [11]
TmOs2SiC orthorhombic Cmcm Z=4 [11]
ThCr2Si2C tetragonal [19]
ThMn2SiC orthorhombic Cmcm Z=4 [11]
ThFe2SiC orthorhombic Cmcm a = 3.8632, b = 10.806, c = 6.950 Z=4 290 8.79 grey metallic

air stable

[5]
Th2Fe2Si2C monoclinic C2/m Z=2 [13]
ThFe10SiC2-x tetragonal a = 10.053 and c = 6.516 [17]
ThMo2Si2C tetragonal P4/mmm a = 4.2296 c = 5.3571 Z=1 95.84 superconductor Tc=2.2K [20]
ThRu2SiC orthorhombic Cmcm Z=4 [11]
ThRe2SiC orthorhombic Cmcm Z=4 [11]
Th2Re2Si2C monoclinic C2/m a=11.1782, b=4.1753, c=7.0293, β=128.721° Z=2 [13]
ThOs2SiC orthorhombic Cmcm Z=4 [11]
U3Si2C2 tetrahedral I4/mmm a=3.5735 c=18.882 Z=2 241.1 10.94 C-Si bond 1.93 Å

Spin glass freeze at 28K

grey metallic

air stable

[2][21]
U20Si16C3 hexagonal P6/mmm a= 10.377, c= 8.005, Z= 1 746.5 11.67 grey metallic

air stable

[2]
UCr2Si2C tetragonal P4/mmm a =3.983 c =5.160 Z=1 81.84 8.32 [22]
UCr3Si2C hexagonal P6/mmm [10]
UMn2SiC orthorhombic Cmcm Z=4 [11]
UFe2SiC orthorhombic Cmcm Z=4 268 grey metallic

air stable

[5]
U2MoSi2C tetragonal P4/mbm a = 6.67 c = 4.33  [23]
UOs2SiC orthorhombic Cmcm Z=4 [11]

References

  1. Höppe, Henning A.; Kotzyba, Gunter; Pöttgen, Rainer; Schnick, Wolfgang (2001-11-23). "High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C and Tb2[Si4N6C]"]. Journal of Materials Chemistry 11 (12): 3300–3306. doi:10.1039/b106533p. http://xlink.rsc.org/?DOI=b106533p. 
  2. 2.0 2.1 2.2 Pöttgen, Rainer; Kaczorowski, Dariusz; Jeitschko, Wolfgang (1993). "Crystal structure, magnetic susceptibility and electrical conductivity of the uranium silicide carbides U 3 Si 2 C 2 and U 20 Si 16 C 3" (in en). J. Mater. Chem. 3 (3): 253–258. doi:10.1039/JM9930300253. ISSN 0959-9428. http://xlink.rsc.org/?DOI=JM9930300253. 
  3. 3.0 3.1 3.2 3.3 Salvador, James R.; Bilc, Daniel; Mahanti, S. D.; Kanatzidis, Mercouri G. (2002). "Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron-Rich Phase Containing B12 Icosahedra". Angewandte Chemie International Edition 41 (5): 844–846. doi:10.1002/1521-3773(20020301)41:5<844::AID-ANIE844>3.0.CO;2-R. ISSN 1521-3773. PMID 12491355. https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3773%2820020301%2941%3A5%3C844%3A%3AAID-ANIE844%3E3.0.CO%3B2-R. 
  4. 4.0 4.1 Andrievski, R A (2017-03-31). "High-melting-point compounds: new approaches and new results". Physics-Uspekhi 60 (3): 276–289. doi:10.3367/UFNe.2016.09.037972. ISSN 1063-7869. Bibcode2017PhyU...60..276A. https://iopscience.iop.org/article/10.3367/UFNe.2016.09.037972. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 Witte, Anne M.; Jeitschko, Wolfgang (October 1994). "Carbides with Filled Re3B-Type Structure" (in en). Journal of Solid State Chemistry 112 (2): 232–236. doi:10.1006/jssc.1994.1297. Bibcode1994JSSCh.112..232W. https://linkinghub.elsevier.com/retrieve/pii/S0022459684712977. 
  6. Nowotny, V (1971). "Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn" (in en). Progress in Solid State Chemistry 5: 27–70. doi:10.1016/0079-6786(71)90016-1. https://linkinghub.elsevier.com/retrieve/pii/0079678671900161. 
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 Gerdes, Martin H.; Witte, Anne M.; Jeitschko, Wolfgang; Lang, Arne; Künnen, Bernd (July 1998). "Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the CompositionR3Si2C2(R=Y, La–Nd, Sm, Gd–Tm)" (in en). Journal of Solid State Chemistry 138 (2): 201–206. doi:10.1006/jssc.1998.7772. Bibcode1998JSSCh.138..201G. https://linkinghub.elsevier.com/retrieve/pii/S0022459698977726. 
  8. Button, T.W.; McColm, I.J. (February 1984). "Reaction of carbon with lanthanide silicides IV: The Y5Si3-C system" (in en). Journal of the Less Common Metals 97: 237–244. doi:10.1016/0022-5088(84)90028-6. https://linkinghub.elsevier.com/retrieve/pii/0022508884900286. 
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Pohlkamp, Marc W.; Jeitschko, Wolfgang (2001-11-01). "Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr 2 Si 2 C (R = Y, La - Nd, Sm, Gd - Ho)" (in en). Zeitschrift für Naturforschung B 56 (11): 1143–1148. doi:10.1515/znb-2001-1108. ISSN 1865-7117. https://www.degruyter.com/document/doi/10.1515/znb-2001-1108/html. 
  10. 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Lemoine, Pierric; Tobola, Janusz; Vernière, Anne; Malaman, Bernard (May 2013). "Crystal and electronic structures of the new quaternary RCr3Si2C (R=Y, Gd–Tm, Lu, U) compounds" (in en). Journal of Solid State Chemistry 201: 293–301. doi:10.1016/j.jssc.2013.03.004. Bibcode2013JSSCh.201..293L. https://linkinghub.elsevier.com/retrieve/pii/S0022459613001199. 
  11. 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33 11.34 11.35 11.36 11.37 11.38 11.39 11.40 11.41 11.42 11.43 11.44 11.45 11.46 11.47 11.48 Hüfken, Thomas; Witte, Anne M.; Jeitschko, Wolfgang (February 1999). "Quaternary Silicide CarbidesAT2SiC (A=Rare Earth Elements and Actinoids,T=Mn, Re, Ru, Os) with DyFe2SiC-Type Structure" (in en). Journal of Solid State Chemistry 142 (2): 279–287. doi:10.1006/jssc.1998.8012. Bibcode1999JSSCh.142..279H. https://linkinghub.elsevier.com/retrieve/pii/S0022459698980124. 
  12. Suzuki, Yuta; Morito, Haruhiko; Yamane, Hisanori (November 2009). "Synthesis and crystal structure of Ba3Si4C2" (in en). Journal of Alloys and Compounds 486 (1–2): 70–73. doi:10.1016/j.jallcom.2009.06.157. https://linkinghub.elsevier.com/retrieve/pii/S0925838809013085. 
  13. 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 Hüfken, Thomas; Witte, Anne M; Jeitschko, Wolfgang (February 1998). "Preparation and crystal structure of quaternary silicide carbides with Dy2Fe2Si2C type structure" (in en). Journal of Alloys and Compounds 266 (1–2): 158–163. doi:10.1016/S0925-8388(97)00511-2. https://linkinghub.elsevier.com/retrieve/pii/S0925838897005112. 
  14. Paramanik, U.B.; Anupam; Burkhardt, U.; Prasad, R.; Geibel, C.; Hossain, Z. (December 2013). "Valence fluctuation in CeMo2Si2C" (in en). Journal of Alloys and Compounds 580: 435–441. doi:10.1016/j.jallcom.2013.05.169. https://linkinghub.elsevier.com/retrieve/pii/S0925838813013297. 
  15. Dashjav, E.; Schnelle, W.; Wagner, F. R.; Kreiner, G.; Kniep, R. (April 2006). "Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo2Si2C". Zeitschrift für Kristallographie - New Crystal Structures 221 (1–4): 267–268. doi:10.1524/ncrs.2006.221.14.267. ISSN 2197-4578. 
  16. Fickenscher, Thomas; Rayaprol, Sudhindra; Appen, Jörg von; Dronskowski, Richard; Pöttgen, Rainer; Łat̀ka, Kazimierz; Gurgul, Jacek (2008-02-01). "Crystal Structure, Chemical Bonding, and Magnetic Hyperfine Interactions in GdRu 2 SiC" (in en). Chemistry of Materials 20 (4): 1381–1389. doi:10.1021/cm7020406. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/cm7020406. 
  17. 17.0 17.1 17.2 17.3 Pöttgen, R.; Ebel, T.; Evers, C.B.H.; Jeitschko, W. (January 1995). "Preparation, Structure Refinement, and Properties of Some Compounds with Dy2Fe2Si2C- and LaMn11C2-x-Type Structure" (in en). Journal of Solid State Chemistry 114 (1): 66–72. doi:10.1006/jssc.1995.1010. Bibcode1995JSSCh.114...66P. https://linkinghub.elsevier.com/retrieve/pii/S0022459685710109. 
  18. R De Faria, L; Ferreira, P P; Correa, L E; Eleno, L T F; Torikachvili, M S; Machado, A J S (2021-06-01). "Possible multiband superconductivity in the quaternary carbide YRe 2 SiC". Superconductor Science and Technology 34 (6): 065010. doi:10.1088/1361-6668/abf7cf. ISSN 0953-2048. Bibcode2021SuScT..34f5010R. https://iopscience.iop.org/article/10.1088/1361-6668/abf7cf. 
  19. Xiao, Yusen; Li, Baizhuo; Duan, Qingchen; Liu, Shaohua; Ren, Qingyong; Lin, Yiqiang; Xia, Yuanhua; Cui, YanWei et al. (2023-12-28). "ThCr 2 Si 2 C: An Antiferromagnetic Metal with a Cr 2 C Square Lattice" (in en). Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c02988. ISSN 0020-1669. https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02988. 
  20. Liu, ZiChen; Li, BaiZhuo; Xiao, YuSen; Duan, QingChen; Cui, YanWei; Mei, YuXue; Tao, Qian; Wei, ShuLi et al. (July 2021). "Superconductivity in ThMo2Si2C with Mo2C square net" (in en). Science China Physics, Mechanics & Astronomy 64 (7): 277411. doi:10.1007/s11433-021-1698-3. ISSN 1674-7348. Bibcode2021SCPMA..6477411L. https://link.springer.com/10.1007/s11433-021-1698-3. 
  21. Matar, S.F.; Pöttgen, R. (October 2012). "First principles investigations of the electronic structure and chemical bonding of U3Si2C2 – A uranium silicide–carbide with the rare [SiC unit"] (in en). Chemical Physics Letters 550: 88–93. doi:10.1016/j.cplett.2012.09.014. Bibcode2012CPL...550...88M. https://linkinghub.elsevier.com/retrieve/pii/S0009261412010585. 
  22. Lemoine, Pierric; Vernière, Anne; Pasturel, Mathieu; Venturini, Gérard; Malaman, Bernard (2018-03-05). "Unexpected Magnetic Ordering on the Cr Substructure in UCr 2 Si 2 C and Structural Relationships in Quaternary U-Cr-Si-C Compounds" (in en). Inorganic Chemistry 57 (5): 2546–2557. doi:10.1021/acs.inorgchem.7b02901. ISSN 0020-1669. PMID 29431434. https://pubs.acs.org/doi/10.1021/acs.inorgchem.7b02901. 
  23. Kovarik, Libor; Devaraj, Arun; Lavender, Curt; Joshi, Vineet (June 2019). "Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys" (in en). Journal of Nuclear Materials 519: 287–291. doi:10.1016/j.jnucmat.2019.03.044. Bibcode2019JNuM..519..287K. https://linkinghub.elsevier.com/retrieve/pii/S0022311518317239.