Chemistry:Organoargon chemistry

From HandWiki
Short description: Study of the carbon-argon bond

Organoargon chemistry describes the synthesis and properties of chemical compounds containing a carbon to argon chemical bond.

Very few such compounds are known. The reaction of acetylene dications with argon produced HCCAr2+ in 2008.[1] Reaction of the CF2+
3
dication with argon produced ArCF2+
2
: this reaction is unique to argon among the noble gases.[2]

The compound FArCCH has been theoretically studied and is predicted to be stable.[3] FArCCF might also be stable enough to synthesise and detect, but probably not FArCCArF.[4] Calculations in 2015 suggest that FArCCH and FArCH3 are stable, but not FArCN.[5] FArCC should be kinetically stable, as is also expected of the krypton and xenon (but not helium) analogues.[6] HArC4H (for which the krypton analogue is known) and HArC6H have also been predicted as stable.[7] FArCO+ and ClArCO+ should be metastable and might be possible to characterise under cryogenic conditions.[8] Calculations suggest that HArCCF and HCCArF should be stable, and that HNgCCF molecules should be more stable than HNgCCH (Ng = Ar, Kr, Xe); the corresponding krypton species have been experimentally produced, but not the argon species despite an experimental attempt. HCCNgCN and HCCNgNC (Ng = Ar, Kr, Xe) are likewise computed to be stable, but experimental searches for them have failed.[9]

References

  1. Ascenzi, Daniela; Tosi, Paolo; Roithová, Jana; Ricketts, Claire L.; Schröder, Detlef; Lockyer, Jessica F.; Parkes, Michael A.; Price, Stephen D. (2008). "Generation of the organo-rare gas dications HCCRg2+ (Rg = Ar and Kr) in the reaction of acetylene dications with rare gases". Physical Chemistry Chemical Physics 10 (47): 7121–7128. doi:10.1039/B810398D. PMID 19039346. Bibcode2008PCCP...10.7121A. 
  2. Lockyear, Jessica F.; Douglas, Kevin; Price, Stephen D.; Karwowska, Małgorzata; Fijalkowski, Karol J.; Grochala, Wojciech; Remeš, Marek; Roithová, Jana et al. (2010). "Generation of the ArCF22+ Dication". The Journal of Physical Chemistry Letters 1 (1): 358–362. doi:10.1021/jz900274p. 
  3. Cohen, Arik; Lundell, Jan; Gerber, R. Benny (2003). "First compounds with argon–carbon and argon–silicon chemical bonds". Journal of Chemical Physics 119 (13): 6415–6417. doi:10.1063/1.1613631. Bibcode2003JChPh.119.6415C. 
  4. Yockel, Scott; Gawlik, Evan; Wilson, Angela K. (2007). "Structure and Stability of the Organo-Noble Gas Molecules XNgCCX and XNgCCNgX (Ng = Kr, Ar; X = F, Cl)†". The Journal of Physical Chemistry A 111 (44): 11261–11268. doi:10.1021/jp071242p. PMID 17880047. Bibcode2007JPCA..11111261Y. 
  5. Mohajeri, Afshan; Bitaab, Nafiseh (2014). "Investigating the nature of intermolecular and intramolecular bonds in noble gas containing molecules". International Journal of Quantum Chemistry 115 (3): 165–171. doi:10.1002/qua.24804. 
  6. Peng, Chia-Yu; Yang, Chang-Yu; Sun, Yi-Lun; Hu, Wei-Ping (2012). "Theoretical prediction on the structures and stability of the noble-gas containing anions FNgCC (Ng=He, Ar, Kr, and Xe)". The Journal of Chemical Physics 137 (19): 194303. doi:10.1063/1.4766326. PMID 23181302. Bibcode2012JChPh.137s4303P. 
  7. Sheng, Li; Cohen, Arik; Gerber, R. Benny (2006). "Theoretical Prediction of Chemically Bound Compounds Made of Argon and Hydrocarbons". Journal of the American Chemical Society 128 (22): 7156–7157. doi:10.1021/ja0613355. PMID 16734457. 
  8. Manna, Debashree; Ghosh, Ayan; Ghanty, Tapan K. (2013). "Theoretical Prediction of XRgCO+ Ions (X = F, Cl, and Rg = Ar, Kr, Xe)". The Journal of Physical Chemistry A 117 (51): 14282–14292. doi:10.1021/jp410631y. PMID 24295279. Bibcode2013JPCA..11714282M. 
  9. Khriachtchev, Leonid; Domanskaya, Alexandra; Lundell, Jan; Akimov, Alexander; Räsänen, Markku; Misochko, Eugenii (2010). "Matrix-Isolation and ab Initio Study of HNgCCF and HCCNgF Molecules (Ng = Ar, Kr, and Xe)". The Journal of Physical Chemistry A 114 (12): 4181–4187. doi:10.1021/jp1001622. PMID 20205379. Bibcode2010JPCA..114.4181K.