Chemistry:Octyl glucoside

From HandWiki
Template:Chembox CMC HLB (set)
β-D-Octyl glucoside
Octyl glucoside.png
Names
IUPAC name
Octyl β-D-glucopyranoside
Systematic IUPAC name
(2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-(octyloxy)oxane-3,4,5-triol
Other names
n-Octyl-β-D-glucoside
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 249-887-8
MeSH C018619
UNII
Properties
C14H28O6
Molar mass 292.37 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Octyl glucoside (n-octyl-β-d-glucoside) is a nonionic surfactant frequently used to solubilise integral membrane proteins for studies in biochemistry. Structurally, it is a glycoside derived from glucose and octanol. Like Genapol X-100 and Triton X-100, it is a nonphysiological amphiphile that makes lipid bilayers less "stiff".[2]

Applications

Octyl glucoside has become one of the most important detergents for purification of membrane proteins because it generally does not denature the protein and can readily be removed from final protein extracts.[3] Above its critical micelle concentration of 0.025 M[1] (~0.7% w/v), it was noted as the best detergent for improving selectivity of immunoprecipitation of phosphotyrosine modified proteins.[4] This detergent has also been shown to rapidly inactivate infective HIV at concentrations above its CMC.[5]

The compound gained popularity with researchers following the publication of an improved synthesis in 1978.[6][7] However, in 1990 the cost remained prohibitive for large-scale protein isolation.[8]

Octyl glucoside has been proposed as a conditioning agent to prevent microbial colonization of contact lenses, due to its ability to lower the hydrophobicity of contact lenses and prevent adhesion of Staphylococcus epidermidis and Pseudomonas aeruginosa.[9]

See also

External links

References

  1. 1.0 1.1 Shinoda, Kozo; Yamaguchi, Tokio; Hori, Ryohei (1961). "The Surface Tension and the Critical Micelle Concentration in Aqueous Solution of β-D-Alkyl Glucosides and their Mixtures". Bulletin of the Chemical Society of Japan 34 (2): 237–241. doi:10.1246/bcsj.34.237. 
  2. "Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol". The Journal of General Physiology 123 (5): 599–621. May 2004. doi:10.1085/jgp.200308996. PMID 15111647. 
  3. "Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy". Colloids and Surfaces. B, Biointerfaces 55 (2): 179–84. April 2007. doi:10.1016/j.colsurfb.2006.11.039. PMID 17207975. 
  4. Zhang, G; Neubert, Ta (Jan 2006). "Use of detergents to increase selectivity of immunoprecipitation of tyrosine phosphorylated peptides prior to identification by MALDI quadrupole-TOF MS". Proteomics 6 (2): 571–8. doi:10.1002/pmic.200500267. ISSN 1615-9853. PMID 16342243. 
  5. "A method of HIV-1 inactivation compatible with antibody-based depletion of abundant proteins from plasma.". Proteomics: Clinical Applications 2 (6): 904–7. Jun 2008. doi:10.1002/prca.200780086. PMID 21136887. 
  6. See PubMed search for "octyl[Title] AND glucoside[Title]" for a timeline of publications.
  7. Keana, Jf; Roman, Rb (1978). "Improved synthesis of n-octyl-beta-D-glucoside: a nonionic detergent of considerable potential in membrane biochemistry". Membrane Biochemistry 1 (3–4): 323–7. doi:10.3109/09687687809063854. ISSN 0149-046X. PMID 756493. 
  8. Kobs, Sf (Nov 1990). "Recovery of octyl beta-glucoside from detergent/protein mixtures". Analytical Biochemistry 191 (1): 47–9. doi:10.1016/0003-2697(90)90385-M. ISSN 0003-2697. PMID 2077942. 
  9. "The effect of octylglucoside and sodium cholate in Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion to soft contact lenses". Optometry and Vision Science 84 (5): 429–34. May 2007. doi:10.1097/OPX.0b013e318058a0cc. PMID 17502827.