Blaschke product

From HandWiki
Short description: Concept in complex analysis

In complex analysis, the Blaschke product is a bounded analytic function in the open unit disc constructed to have zeros at a (finite or infinite) sequence of prescribed complex numbers

[math]\displaystyle{ a_0,\ a_1, \ldots }[/math]

inside the unit disc, with the property that the magnitude of the function is constant along the boundary of the disc.

Blaschke product, [math]\displaystyle{ B(z) }[/math], associated to 50 randomly chosen points in the unit disk. B(z) is represented as a Matplotlib plot, using a version of the Domain coloring method.

Blaschke products were introduced by Wilhelm Blaschke (1915). They are related to Hardy spaces.

Definition

A sequence of points [math]\displaystyle{ (a_n) }[/math] inside the unit disk is said to satisfy the Blaschke condition when

[math]\displaystyle{ \sum_n (1-|a_n|) \lt \infty. }[/math]

Given a sequence obeying the Blaschke condition, the Blaschke product is defined as

[math]\displaystyle{ B(z)=\prod_n B(a_n,z) }[/math]

with factors

[math]\displaystyle{ B(a,z)=\frac{|a|}{a}\;\frac{a-z}{1 - \overline{a}z} }[/math]

provided [math]\displaystyle{ a\neq 0 }[/math]. Here [math]\displaystyle{ \overline{a} }[/math] is the complex conjugate of [math]\displaystyle{ a }[/math]. When [math]\displaystyle{ a=0 }[/math] take [math]\displaystyle{ B(0,z)=z }[/math].

The Blaschke product [math]\displaystyle{ B(z) }[/math] defines a function analytic in the open unit disc, and zero exactly at the [math]\displaystyle{ a_n }[/math] (with multiplicity counted): furthermore it is in the Hardy class [math]\displaystyle{ H^\infty }[/math].[1]

The sequence of [math]\displaystyle{ a_n }[/math] satisfying the convergence criterion above is sometimes called a Blaschke sequence.

Szegő theorem

A theorem of Gábor Szegő states that if [math]\displaystyle{ f\in H^1 }[/math], the Hardy space with integrable norm, and if [math]\displaystyle{ f }[/math] is not identically zero, then the zeroes of [math]\displaystyle{ f }[/math] (certainly countable in number) satisfy the Blaschke condition.

Finite Blaschke products

Finite Blaschke products can be characterized (as analytic functions on the unit disc) in the following way: Assume that [math]\displaystyle{ f }[/math] is an analytic function on the open unit disc such that [math]\displaystyle{ f }[/math] can be extended to a continuous function on the closed unit disc

[math]\displaystyle{ \overline{\Delta}= \{z \in \mathbb{C} \mid |z|\le 1\} }[/math]

that maps the unit circle to itself. Then [math]\displaystyle{ f }[/math] is equal to a finite Blaschke product

[math]\displaystyle{ B(z)=\zeta\prod_{i=1}^n\left({{z-a_i}\over {1-\overline{a_i}z}}\right)^{m_i} }[/math]

where [math]\displaystyle{ \zeta }[/math] lies on the unit circle and [math]\displaystyle{ m_i }[/math] is the multiplicity of the zero [math]\displaystyle{ a_i }[/math], [math]\displaystyle{ |a_i|\lt 1 }[/math]. In particular, if [math]\displaystyle{ f }[/math] satisfies the condition above and has no zeros inside the unit circle, then [math]\displaystyle{ f }[/math] is constant (this fact is also a consequence of the maximum principle for harmonic functions, applied to the harmonic function [math]\displaystyle{ \log(|f(z)|) }[/math].

See also

References

  1. Conway (1996) 274