Biology:Perivitelline fluid

From HandWiki

The perivitelline fluid is an extracellular fluid found in the eggs of most gastropods and constitutes the main source of nutrition and defense for their embryos. It replaces the egg yolk of other animals, which in snail eggs is reduced to non-nutritive proteinaceous granules with putative enzymatic function.[1] During embryonic development the perivitelline fluid is ingested macropinocytotically by the embryos and the resulting phagosomes fuse with β-granules containing hydrolytic enzymes, which digest the perivitelline fluid components.[1][2][3][4][5]

Origin

The perivitelline fluid is synthesized by the albumen gland of female snails (also known as albumen gland-capsule gland complex or uterine gland), an accessory gland from the reproductive tract. Fertilized oocytes enter the albumen gland and, on their way out, are coated with the perivitelline fluid.[1][6][7] The amount of perivitelline fluid per egg vary considerably among species.[1] However, the amount of perivitelline fluid per egg is constant within a given species.[8] In this regard, it has been shown in Pomacea apple snails that during the reproductive season, when the nutrient precursors decrease in the albumen gland due to successive ovipositions, females tend to reduce the number of eggs per clutch but not the amount allocated to each egg.[9]

Composition

The perivitelline fluid contains predominantly galactogen, proteins, and calcium.[8][10][11][12]

Carbohydrate is invariably the most abundant component of the perivitelline fluid. Specifically, the eggs of most gastropod accumulate the polysaccharide galactogen,[8][10][11][12][13] which would provide the main energy source for the developing embryo. A small amount of soluble glucose was also detected in some species.[11][12]

Proteins, called perivitellins, are the second most abundant component of the perivitelline fluid. Perivitellins are also a source of nutrients for snail embryos [11][14] and play a role in protection against pathogens[12][14][15][16] and predators, and include non-digestible perivitellins, toxins and protease inhibitors.[12][17][18][19][20][21][22][23][24][25] These proteins were thoroughly studied in apple snails from the genus Pomacea, where they were originally grouped in two most abundant protein fractions perivitellin-1 or PV1, perivitellin-2 or PV2 (comprising approximately 70% of total protein), and a heterogeneous fraction dubbed perivitellin-3 or PV3 fraction.[26][27] Recent proteomic analyses, however, showed that the perivitelline fluid from Pomacea snails has between 34-38 different proteins with a wide variety of functions.[28][29][30]

Lipids are a minor component, mostly represented by membrane lipids, indicating that snails do not use lipids as a major energy reserve during reproduction.[11][12] Apart from structural lipids, some eggs also contain carotenoid pigments, notably astaxanthin.[12][17][27] These lipidic pigments have been associated with antioxidant and photoprotective functions,[27][31][32] and also provide Pomacea eggs with the typical bright color that would function as a warning signal (i.e. aposematism) to deter predators.[27][33][34][35]

Among the inorganic components, calcium ion is the most abundant in the perivitelline fluid. As these snails have direct development, calcium needs to be stored to allow the snail to develop the shell during organogenesis. Besides, calcium is the main component of the eggshell of those snails with aerial oviposition.[36]

References

  1. 1.0 1.1 1.2 1.3 "Mollusca". Reproductive Biology of Invertebrates. I: Oogenesis, oviposition and oosorption.. John Wiley and Sons. 1983. pp. 297–355. 
  2. Bluemink JG (1967). The subcellular structure of the blastula of Limnaea stagnalis L. (Mollusca) and the metabolization of the nutrient reserve (Ph.D. thesis). Utrecht.
  3. "Origine et ultrastructure des plaquettes vitelline de la planorbe.". Arch. Anat. Mier. Morph. Exptl. 47: 211–229. 1958. 
  4. Ferritin-Dotter bei der Schnecke Planorbarius corneus L. Verh. Dtsch. Zool. Ges.. Stuttgart: Gustav Fischer Verlag. 1977. pp. 301. 
  5. "Development beyond the gastrula stage and digestive organogenesis in the apple-snail Pomacea canaliculata (Architaenioglossa, Ampullariidae)". Biocell 33 (1): 49–65. April 2009. doi:10.32604/biocell.2009.33.049. PMID 19499886. 
  6. "Comparing apples with apples: clarifying the identities of two highly invasive Neotropical Ampullariidae (Caenogastropoda)" (in en). Zoological Journal of the Linnean Society 166 (4): 723–753. 2012. doi:10.1111/j.1096-3642.2012.00867.x. ISSN 1096-3642. 
  7. "Pallial oviduct of Pomacea canaliculata (Gastropoda): ultrastructural studies of the parenchymal cellular types involved in the metabolism of perivitellins". Cell and Tissue Research 324 (3): 523–33. June 2006. doi:10.1007/s00441-005-0132-x. PMID 16453107. 
  8. 8.0 8.1 8.2 "Der galaktogengehalt der Eier von Lymnaea stagnalis während der embryonalentwicklung.". Biochem. Z. 328: 342–347. 1956. 
  9. "Biosynthesis in the Albumen Gland-Capsule Gland Complex Limits Reproductive Effort in the Invasive Apple Snail Pomacea canaliculata". The Biological Bulletin 235 (1): 1–11. August 2018. doi:10.1086/699200. PMID 30160995. 
  10. 10.0 10.1 "Electro- and immunoelectrophoretic patterns of egg albumen of the pond snail Limnea palustris.". Acta Embryol. Morph. Exp. 7: 155–166. 1964. 
  11. 11.0 11.1 11.2 11.3 11.4 "Biochemical composition and energy sources during embryo development and in early juveniles of the snail Pomacea canaliculata (Mollusca: Gastropoda)". Journal of Experimental Zoology 280 (6): 375–383. 1998. doi:10.1002/(SICI)1097-010X(19980415)280:6<375::AID-JEZ1>3.0.CO;2-K. 
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 "The eggs of the apple snail Pomacea maculata are defended by indigestible polysaccharides and toxic proteins". Canadian Journal of Zoology 94 (11): 777–785. 2016-09-12. doi:10.1139/cjz-2016-0049. 
  13. "Chemical embriology of Mollusca". Chemical Zoology. New York: Academic Press. 1972. pp. 155–185. 
  14. 14.0 14.1 "Bioactive Molecules from Sea Hares". Molluscs. Progress in Molecular and Subcellular Biology. 43. Berlin, Heidelberg: Springer. 2006. pp. 215–39. doi:10.1007/978-3-540-30880-5_10. ISBN 978-3-540-30880-5. 
  15. "Agglutinating activity and structural characterization of scalarin, the major egg protein of the snail Pomacea scalaris (d'Orbigny, 1832)". PLOS ONE 7 (11): e50115. 2012-11-20. doi:10.1371/journal.pone.0050115. PMID 23185551. Bibcode2012PLoSO...750115I. 
  16. "Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (gastropoda, mollusca)". Developmental and Comparative Immunology 34 (4): 425–35. April 2010. doi:10.1016/j.dci.2009.12.001. PMID 19995576. 
  17. 17.0 17.1 "Characterization of the major egg glycolipoproteins from the perivitellin fluid of the apple snail Pomacea canaliculata". Molecular Reproduction and Development 68 (3): 359–64. July 2004. doi:10.1002/mrd.20078. PMID 15112330. 
  18. "Novel animal defenses against predation: a snail egg neurotoxin combining lectin and pore-forming chains that resembles plant defense and bacteria attack toxins". PLOS ONE 8 (5): e63782. 2013-05-30. doi:10.1371/journal.pone.0063782. PMID 23737950. Bibcode2013PLoSO...863782D. 
  19. "Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth". PLOS Neglected Tropical Diseases 8 (6): e2961. June 2014. doi:10.1371/journal.pntd.0002961. PMID 24945629. 
  20. "First egg protein with a neurotoxic effect on mice". Toxicon 52 (3): 481–8. September 2008. doi:10.1016/j.toxicon.2008.06.022. PMID 18640143. 
  21. "A lectin of a non-invasive apple snail as an egg defense against predation alters the rat gut morphophysiology". PLOS ONE 13 (6): e0198361. 2018-06-01. doi:10.1371/journal.pone.0198361. PMID 29856808. Bibcode2018PLoSO..1398361I. 
  22. "Non-digestible proteins and protease inhibitors: implications for defense of the colored eggs of the freshwater apple snail Pomacea canaliculata". Canadian Journal of Zoology 97 (6): 558–566. 2019-02-01. doi:10.1139/cjz-2018-0210. http://sedici.unlp.edu.ar/handle/10915/124301. 
  23. "Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins". Scientific Reports 7 (1): 15848. November 2017. doi:10.1038/s41598-017-16185-9. PMID 29158565. Bibcode2017NatSR...715848P. 
  24. "Novel Role for Animal Innate Immune Molecules: Enterotoxic Activity of a Snail Egg MACPF-Toxin" (in English). Frontiers in Immunology 11: 428. 2020. doi:10.3389/fimmu.2020.00428. PMID 32231667. 
  25. "Exaptation of two ancient immune proteins into a new dimeric pore-forming toxin in snails". Journal of Structural Biology 211 (2): 107531. August 2020. doi:10.1016/j.jsb.2020.107531. PMID 32446810. 
  26. "Lipoproteins of the egg perivitelline fluid of Pomacea canaliculata snails (Mollusca: Gastropoda)". The Journal of Experimental Zoology 276 (5): 307–14. December 1996. doi:10.1002/(SICI)1097-010X(19961201)276:5<307::AID-JEZ1>3.0.CO;2-S. PMID 8972583. 
  27. 27.0 27.1 27.2 27.3 "The major egg reserve protein from the invasive apple snail Pomacea maculata is a complex carotenoprotein related to those of Pomacea canaliculata and Pomacea scalaris". Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 169: 63–71. March 2014. doi:10.1016/j.cbpb.2013.11.008. PMID 24291422. 
  28. "First proteome of the egg perivitelline fluid of a freshwater gastropod with aerial oviposition". Journal of Proteome Research 11 (8): 4240–8. August 2012. doi:10.1021/pr3003613. PMID 22738194. 
  29. "Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails". Journal of Proteomics 172: 36–48. February 2018. doi:10.1016/j.jprot.2017.11.002. PMID 29122728. 
  30. "Egg perivitelline fluid proteome of a freshwater snail: Insight into the transition from aquatic to terrestrial egg deposition". Rapid Communications in Mass Spectrometry 34 (7): e8605. April 2020. doi:10.1002/rcm.8605. PMID 31657488. http://sedici.unlp.edu.ar/handle/10915/127372. 
  31. "Metabolism of ovorubin, the major egg lipoprotein from the apple snail". Molecular and Cellular Biochemistry 243 (1–2): 9–14. January 2003. doi:10.1023/a:1021616610241. PMID 12619883. 
  32. "Astaxanthin binding and structural stability of the apple snail carotenoprotein ovorubin". Archives of Biochemistry and Biophysics 460 (1): 107–12. April 2007. doi:10.1016/j.abb.2006.12.033. PMID 17324373. 
  33. "Egg carotenoproteins in neotropical Ampullariidae (Gastropoda: Arquitaenioglossa)". Comparative Biochemistry and Physiology. Toxicology & Pharmacology 146 (1–2): 158–67. 2007-07-01. doi:10.1016/j.cbpc.2006.10.013. PMID 17320485. 
  34. "Isolation and characterization of a novel perivitellin from the eggs of Pomacea scalaris (Mollusca, Ampullariidae)". Molecular Reproduction and Development 75 (9): 1441–8. September 2008. doi:10.1002/mrd.20880. PMID 18213678. 
  35. "Antioxidant defense system in the apple snail eggs, the role of ovorubin". Archives of Biochemistry and Biophysics 422 (1): 1–8. February 2004. doi:10.1016/j.abb.2003.11.018. PMID 14725852. 
  36. "Studies on the reproductive biology of gastropods: Part III. Calcium provision and the evolution of terrestrial eggs among gastropods.". Journal of Conchology 30: 145–154. 1980.