Biology:M33 (gene)

From HandWiki

M33 is a gene.[1] It is a mammalian homologue of Drosophila Polycomb.[1] It localises to euchromatin within interphase nuclei, but it is enriched within the centromeric heterochromatin of metaphase chromosomes.[1] In mice, the official symbol of M33 gene styled Cbx2 and the official name chromobox 2 are maintained by the MGI. Also known as pc; MOD2. In human ortholog CBX2, synonyms CDCA6, M33, SRXY5 from orthology source HGNC. M33 was isolated by means of the structural similarity of its chromodomain.[2] It contains a region of homology shared by Xenopus and Drosophila in the fifth exon. [3] Polycomb genes in Drosophila mediate changes in higher-order chromatin structure to maintain the repressed state of developmentally regulated genes .[4][5] It may also involved in the campomelic syndrome and neoplastic disorders linked to allele loss in this region.[6] Disruption of the murine M33 gene, displayed posterior transformation of the sternal ribs and vertebral columns .[7]

Gene location

The mouse M33 gene is located on the Chromosome 11, from base pair 119,022,962 to base pair 119,031,270 (Build GRCm38/mm10). Human homolog of M33, Chromobox homolog 2 (CBX2 ) is located on Chromosome 17, from base pair 79,777,188 to base pair 79,787,650(Build GRCh38.p2).

Location of the M33 gene on chromosome 11.

Protein structure

This protein contains Chromo (CHRromatin Organization MOdifier) domain and nuclear localization signal motif.[8] The full-length M33 sequence encodes a 519 amino acid (aa) protein.[2]

Function and mechanism

The mouse Polycomb group (PcG) protein M33 maintains repressed states of developmentally important genes, including homeotic genes and forms nuclear complexes with other PcG members. e.g.BMI1.[9] It also direct and/or indirect controls the vicinity of Hox genes regulatory regions, which are the accessibility of retinoic acid response elements .[10] homeotic transformations of the axial skeleton, and growth retardation.[11] [12] Moreover, the deficient of M33 also possessed abnormally few nucleated cells in the thymus and spleen, due to the aberrant T-cell expansion.[13] In transiently transfected cells, M33 acts as a transcriptional repressor . Biochemical assays indicate that two murine proteins, Ring1A[14] and Ring1B[14] interact directly with the repressor domain of M33 and that Ring1A can also behave as a transcriptional repressor.[15]

Mutation

Katoh-Fukui et al. (1998)[5][16]

References

  1. 1.0 1.1 1.2 "M33, a mammalian homologue of Drosophila Polycomb localises to euchromatin within interphase nuclei but is enriched within the centromeric heterochromatin of metaphase chromosomes". Cytogenetics and Cell Genetics 78 (1): 50–5. 1997. doi:10.1159/000134626. PMID 9345907. 
  2. 2.0 2.1 "The mouse has a Polycomb-like chromobox gene". Development 114 (4): 921–9. April 1992. doi:10.1242/dev.114.4.921. PMID 1352241. 
  3. Reijnen, Marlene J.; Hamer, Karien M.; den Blaauwen, Jan L.; Lambrechts, Caro; Schoneveld, Ilse; van Driel, Roel; Otte, Arie P. (1995-09-01). "Polycomb and bmi-1 homologs are expressed in overlapping patterns in Xenopus embryos and are able to interact with each other". Mechanisms of Development 53 (1): 35–46. doi:10.1016/0925-4773(95)00422-X. PMID 8555110. 
  4. "Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin". Cell 75 (6): 1187–98. December 1993. doi:10.1016/0092-8674(93)90328-n. PMID 7903220. 
  5. 5.0 5.1 "Male-to-female sex reversal in M33 mutant mice". Nature 393 (6686): 688–92. June 1998. doi:10.1038/31482. PMID 9641679. Bibcode1998Natur.393..688K. 
  6. "M33 (34): sc-136387". Santa Cruz Biotechnology, Inc.. https://datasheets.scbt.com/sc-136387.pdf. 
  7. "Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression". Blood 106 (5): 1612–20. September 2005. doi:10.1182/blood-2004-08-3367. PMID 15899914. 
  8. "Identification of a nuclear localization signal in mouse polycomb protein, M33". Zoological Science 23 (9): 785–91. September 2006. doi:10.2108/zsj.23.785. PMID 17043400. 
  9. "RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian Polycomb group complexes". Biochemical and Biophysical Research Communications 245 (2): 356–65. April 1998. doi:10.1006/bbrc.1998.8438. PMID 9571155. 
  10. "Altered retinoic acid sensitivity and temporal expression of Hox genes in polycomb-M33-deficient mice". Developmental Biology 224 (2): 238–49. August 2000. doi:10.1006/dbio.2000.9791. PMID 10926763. 
  11. "Role of polycomb group protein cbx2/m33 in meiosis onset and maintenance of chromosome stability in the Mammalian germline". Genes 2 (1): 59–80. 2011-01-11. doi:10.3390/genes2010059. PMID 22200029. 
  12. "Disorders of sex development: new genes, new concepts". Nature Reviews. Endocrinology 9 (2): 79–91. February 2013. doi:10.1038/nrendo.2012.235. PMID 23296159. 
  13. "Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice". Development 124 (3): 721–9. February 1997. doi:10.1242/dev.124.3.721. PMID 9043087. https://www.researchgate.net/publication/14168105. 
  14. 14.0 14.1 "Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression". The International Journal of Developmental Biology 53 (2–3): 355–70. 2009-01-01. doi:10.1387/ijdb.082690mv. PMID 19412891. 
  15. "Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain". The EMBO Journal 16 (19): 5930–42. October 1997. doi:10.1093/emboj/16.19.5930. PMID 9312051. 
  16. "Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene". American Journal of Human Genetics 84 (5): 658–63. May 2009. doi:10.1016/j.ajhg.2009.03.016. PMID 19361780.