Biology:FAM86B1

From HandWiki
Short description: Protein found in most eukaryotes


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example
gif of FAM86B1 protein structure predicted by AlphaFold. Shows the FAM86 domain, the smaller of the two protein domains and consisting of several alpha helices, and the AdoMet MTases domain, consisting of a beta sheet surrounded by a few alpha helices, as well as the separation of the two domains, which have a thin and flexible link, making the protein roughly form a "S" shape.
FAM86B1 protein structure from AlphaFold.[1][2][3] Colored red for alpha helices, yellow for beta sheet, green for peroxisomal targeting signal, and blue for other coils. Created using NCBI iCn3D protein visualizer.[4][5][6]

FAM86B1 is a protein, which in humans is encoded by the FAM86B1 gene. FAM86B1 is an essential gene in humans.[7] The protein contains two domains: FAM86, and AdoMet-MTase.

FAM86B1 homologs are found in most eukaryotes, from mammals to plants such as wild soybean.

Gene

FAM86B1 in the human genome is located at 8p23.1, spanning about 12,000 base pairs. FAM86B1 contains 9 exons.[8]

8p23.1 is the location of one of the largest and most common genetic inversions in humans.[9] FAM86B1 is upregulated in inv-8p23.1.[10] In the non-inverted allele 8p23.1, FAM86B1 is on the negative strand.[11] In the allele inv-8p23.1, FAM86B1 is on the positive strand.[12]

Production

In humans, there are 20 alternative splicings of FAM86B1, and 19 mRNA transcripts. In humans, FAM86B1 is expressed ubiquitously,[13] and most strongly in brain tissues and the pituitary gland.[14]

Protein

The human FAM86B1 protein contains two domains, FAM86 and AdoMet-MTase, making FAM86B1 a member of these two protein families.[15] The human FAM86B1 gene encodes 13 protein isoforms. FAM86B1 is a non-classically secreted protein, targeted to the peroxisome by a C-terminus signal.[16]

FAM86B1 interacts with ubiquitin-C[17] and FAM86C1.[18]

Evolution

FAM86B1 homologs are seen in most eukaryotes, but are not found in distant plants, such as green algae. Wild soybean is the most distant species from humans with a FAM86B1 homolog.

FAM86B1 in humans is paralogous with other FAM86 protein-coding genes.

Human FAM86 protein-coding genes
Gene symbol Gene location NCBI gene ID
EEF2KMT 16p13.3 196483
FAM86B1 8p23.1 85002
FAM86B2 8p23.1 653333
FAM86B3 8p23.1 286042
LOC128966622 8p23.1 128966622
FAM86C1 11q13.4 55199
FAM86C2 11q13.2 645332

Clinical significance

Cancer

Alternative splicings of FAM86B1 are associated with decreased relapse in rectal cancer[19] and surviving longer in glioblastoma.[20] In bladder urothelial carcinoma, a differing FAM86B1 expression pattern compared to noncancer controls is associated with surviving longer.[21] In glioma, lower survival rates are associated with downregulation of FAM86B1.[22] Loss of FAM86B1 expression is associated with uterine carcinosarcoma, prostate adenocarcinoma, and bladder urothelial carcinoma.[23]

Infection

Severe respiratory syncytial virus bronchiolitis is associated with downregulation of FAM86B1.[24] Enterovirus-71, a positive-sense single-stranded RNA virus, binds to FAM86B1.[25] FAM86B1 is upregulated after exposure to the infection agent of Candida albicans.[26]

Inflammation

FAM86B1 is upregulated after exposure to oS100A4, a potential trigger of inflammation in rheumatoid arthritis.[26] FAM86B1 is downregulated after remote ischemic preconditioning, which inhibits inflammation regulation.[27]

References

  1. "AlphaFold Protein Structure Database". https://alphafold.ebi.ac.uk/entry/Q8N7N1. 
  2. Jumper, John; Evans, Richard; Pritzel, Alexander; Green, Tim; Figurnov, Michael; Ronneberger, Olaf; Tunyasuvunakool, Kathryn; Bates, Russ et al. (August 2021). "Highly accurate protein structure prediction with AlphaFold" (in en). Nature 596 (7873): 583–589. doi:10.1038/s41586-021-03819-2. ISSN 1476-4687. PMID 34265844. Bibcode2021Natur.596..583J. 
  3. Varadi, Mihaly; Anyango, Stephen; Deshpande, Mandar; Nair, Sreenath; Natassia, Cindy; Yordanova, Galabina; Yuan, David; Stroe, Oana et al. (7 January 2022). "AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models". Nucleic Acids Research. Volume 50, Issue D1 50 (D1): D439–D444. doi:10.1093/nar/gkab1061. PMID 34791371. PMC 8728224. https://academic.oup.com/nar/article/50/D1/D439/6430488. Retrieved 2023-12-07. 
  4. "iCn3D: Web-based 3D Structure Viewer". https://structure.ncbi.nlm.nih.gov/Structure/icn3d/. 
  5. Wang, Jiyao; Youkharibache, Philippe; Zhang, Dachuan; Lanczycki, Christopher J.; Geer, Renata C.; Madej, Thomas; Phan, Lon; Ward, Minghong et al. (2020-01-01). "iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures". Bioinformatics 36 (1): 131–135. doi:10.1093/bioinformatics/btz502. ISSN 1367-4811. PMID 31218344. 
  6. Wang, Jiyao; Youkharibache, Philippe; Marchler-Bauer, Aron; Lanczycki, Christopher; Zhang, Dachuan; Lu, Shennan; Madej, Thomas; Marchler, Gabriele H. et al. (2022). "iCn3D: From Web-Based 3D Viewer to Structural Analysis Tool in Batch Mode". Frontiers in Molecular Biosciences 9: 831740. doi:10.3389/fmolb.2022.831740. ISSN 2296-889X. PMID 35252351. 
  7. Francis, Joel William; Shao, Zengyu; Narkhede, Pradnya; Trinh, Annie Truc; Lu, Jiuwei; Song, Jikui; Gozani, Or (July 2023). "The FAM86 domain of FAM86A confers substrate specificity to promote EEF2-Lys525 methylation". Journal of Biological Chemistry (Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology) 299 (7): 104842. doi:10.1016/j.jbc.2023.104842. ISSN 0021-9258. PMID 37209825. 
  8. "FAM86B1 family with sequence similarity 86 member B1 [Homo sapiens (human) - Gene - NCBI"]. https://www.ncbi.nlm.nih.gov/gene/85002. 
  9. Salm, Maximilian P.A.; Horswell, Stuart D.; Hutchison, Claire E.; Speedy, Helen E.; Yang, Xia; Liang, Liming; Schadt, Eric E.; Cookson, William O. et al. (June 2012). "The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism". Genome Research 22 (6): 1144–1153. doi:10.1101/gr.126037.111. ISSN 1088-9051. PMID 22399572. 
  10. Carreras-Gallo, Natàlia; Cáceres, Alejandro; Balagué-Dobón, Laura; Ruiz-Arenas, Carlos; Andrusaityte, Sandra; Carracedo, Ángel; Casas, Maribel; Chatzi, Leda et al. (2022-05-12). "The early-life exposome modulates the effect of polymorphic inversions on DNA methylation" (in en). Communications Biology 5 (1): 455. doi:10.1038/s42003-022-03380-2. ISSN 2399-3642. PMID 35550596. 
  11. "Homo sapiens genome assembly GRCh38.p14" (in en). https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000001405.40/. 
  12. "Homo sapiens genome assembly T2T-CHM13v2.0" (in en). https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_009914755.1/. 
  13. "4702180 - GEO Profiles - NCBI". https://www.ncbi.nlm.nih.gov/geoprofiles/4702180. 
  14. "FAM86B1 transcriptomics data - The Human Protein Atlas". https://www.proteinatlas.org/ENSG00000186523-FAM86B1/summary/rna. 
  15. "putative protein N-methyltransferase FAM86B1 [Homo sapiens - Protein - NCBI"]. https://www.ncbi.nlm.nih.gov/protein/134133220. 
  16. "PSORT Users' Manual". https://psort.hgc.jp/psort/helpwww2.html#pox. 
  17. Kim, Woong; Bennett, Eric J; Huttlin, Edward L; Guo, Ailan; Li, Jing; Possemato, Anthony; Sowa, Mathew E; Rad, Ramin et al. (2011-10-01). "Systematic and quantitative assessment of the ubiquitin-modified proteome". Molecular Cell 44 (2): 325–340. doi:10.1016/j.molcel.2011.08.025. ISSN 1097-4164. PMID 21906983. 
  18. Huttlin, Edward L; Bruckner, Raphael J; Navarrete-Perea, Jose; Cannon, Joe R; Baltier, Kurt; Gebreab, Fana; Gygi, Melanie P; Thornock, Alexandra et al. (2021-05-01). "Dual proteome-scale networks reveal cell-specific remodeling of the human interactome". Cell 184 (11): 3022–3040.e28. doi:10.1016/j.cell.2021.04.011. ISSN 1097-4172. PMID 33961781. 
  19. Zhang, Zhiyuan; Ji, Meiling; lv, Yang; Feng, Qingyang; Zheng, Peng; Mao, Yihao; Xu, Yuqiu; He, Guodong et al. (2020-09-01). "A signature predicting relapse based on integrated analysis on relapse-associated alternative mRNA splicing in I–III rectal cancer". Genomics 112 (5): 3274–3283. doi:10.1016/j.ygeno.2020.06.021. ISSN 0888-7543. PMID 32544549. https://www.sciencedirect.com/science/article/pii/S0888754320303153. 
  20. Zhao, Liang; Zhang, Jiayue; Liu, Zhiyuan; Wang, Yu; Xuan, Shurui; Zhao, Peng (2021). "Comprehensive Characterization of Alternative mRNA Splicing Events in Glioblastoma: Implications for Prognosis, Molecular Subtypes, and Immune Microenvironment Remodeling". Frontiers in Oncology 10. doi:10.3389/fonc.2020.555632. ISSN 2234-943X. PMID 33575206. 
  21. Yan, Jinling; Li, Peiluan; Gao, Rong; Li, Ying; Chen, Luonan (2021). "Identifying Critical States of Complex Diseases by Single-Sample Jensen-Shannon Divergence". Frontiers in Oncology 11. doi:10.3389/fonc.2021.684781. ISSN 2234-943X. PMID 34150649. 
  22. Yang, Si; Zheng, Yi; Zhou, Linghui; Jin, Jing; Deng, Yujiao; Yao, Jia; Yang, Pengtao; Yao, Li et al. (2020-12-04). "miR-499 rs3746444 and miR-196a-2 rs11614913 Are Associated with the Risk of Glioma, but Not the Prognosis". Molecular Therapy - Nucleic Acids 22: 340–351. doi:10.1016/j.omtn.2020.08.038. ISSN 2162-2531. PMID 33230439. 
  23. Carlson, Scott M.; Gozani, Or (2016-11-01). "Nonhistone Lysine Methylation in the Regulation of Cancer Pathways" (in en). Cold Spring Harbor Perspectives in Medicine 6 (11): a026435. doi:10.1101/cshperspect.a026435. ISSN 2157-1422. PMID 27580749. PMC 5088510. http://perspectivesinmedicine.cshlp.org/content/6/11/a026435. 
  24. Besteman, Sjanna B.; Callaghan, Amie; Langedijk, Annefleur C.; Hennus, Marije P.; Meyaard, Linde; Mokry, Michal; Bont, Louis J.; Calis, Jorg J. A. (2020-11-01). "Transcriptome of airway neutrophils reveals an interferon response in life-threatening respiratory syncytial virus infection". Clinical Immunology 220: 108593. doi:10.1016/j.clim.2020.108593. ISSN 1521-6616. PMID 32920212. https://www.sciencedirect.com/science/article/pii/S1521661620307531. 
  25. Rattanakomol, Patthaya (17 May 2021) (in en). Investigation of Role of Enterovirus A71 Nonstructural 3A Protein and Interacting Protein in Viral Replication (Doctoral dissertation). Dissertation Advisor Jeeraphong Thanongsaksrikul. Dissertation Co-Advisors Wanpen Chaicumpa, Pornpimon Angkasekwinai, Pongsri Tongtawe, Potjanee Srimanote, Suganya Yongkiettrakul. Thammasat University. https://ethesisarchive.library.tu.ac.th/thesis/2020/TU_2020_5712330041_14158_13977.pdf. 
  26. 26.0 26.1 Neidhart, Michel; Pajak, Agnieszka; Laskari, Katerina; Riksen, Niels P.; Joosten, Leo A. B.; Netea, Mihai G.; Lutgens, Esther; Stroes, Eric S. G. et al. (2019). "Oligomeric S100A4 Is Associated With Monocyte Innate Immune Memory and Bypass of Tolerance to Subsequent Stimulation With Lipopolysaccharides". Frontiers in Immunology 10: 791. doi:10.3389/fimmu.2019.00791. ISSN 1664-3224. PMID 31037071. 
  27. Lou, Zhiling; Wu, Weijia; Chen, Ruiheng; Xia, Jie; Shi, Haochun; Ge, Hanwei; Xue, Jiyang; Wang, Hanlei et al. (2021-01-15). "Microarray analysis reveals a potential role of lncRNA expression in remote ischemic preconditioning in myocardial ischemia-reperfusion injury". American Journal of Translational Research 13 (1): 234–252. ISSN 1943-8141. PMID 33527021.