Biology:2024 in paleomammalogy

From HandWiki

This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2024, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2024.

Afrotherians

Proboscideans

Proboscidean research

  • Evidence from tooth enamel of a straight-tusked elephant specimen from the MIS 12 site Marathousa 1 (Greece), interpreted as indicating that the studied individual (as well as the hominins that processed its carcass) lived in stable environmental conditions with sufficient plant cover and limited seasonality, is presented by Roditi et al. (2024).[1]
  • Rowe et al. (2024) use isotopic and genetic data from a tusk of a female woolly mammoth from the Swan Point Archaeological Site (Alaska, United States ) to trace the studied individual's lifetime movements, interpret their findings as indicative of movement of the studied individual approximately 1000 km northwest in the middle of her life, and compare the range of movement of the studied mammoth with the distribution of early archaeological sites in Alaska, arguing that early North Americans likely settled in the territories frequently used by mammoths.[2]

Euarchontoglires

Primates

Primate research

  • A study on the timeline and causes of extinction of Gigantopithecus blacki is published by Zhang et al. (2024), who use data from caves in the Chongzuo and Bubing Basin (China) to establish a regional window of extinction of G. blacki at 295.000–215.000 yers ago, and interpret the demise of G. blacki as caused by inability to adapt to changes in forest structure resulting from increased seasonality.[3]

General paleoanthropology

  • Claims that the Melka Kunture site-complex (Ethiopia) includes Oldowan and early Acheulean material which is approximately 2.0-1.9 million-years-old, presented by Mussi et al. (2023)[4] and Muttoni et al. (2023),[5] are contested by Gossa et al. (2024).[6]
  • Evidence indicating that dental changes associated with later members of the genus Homo were not present in Homo habilis is presented by Davies et al. (2024).[7]
  • A study on the histology of teeth of Homo naledi, providing evidence of enamel growth resembling the one seen in modern humans, is published by Mahoney et al. (2024).[8]
  • Delezene et al. (2024) interpret low degree of morphological variation between teeth of different individuals of Homo naledi as consistent with the interpretation of known sample of fossils of H. naledi as including few or no individuals of one sex.[9]
  • Review of developments in the study of Paleolithic bone knapping tool industries in the preceding years is published by Parfitt & Bello (2024), who reevaluate evidence of the presence of bone knapping tools at the Acheulean Horse Butchery Site (Boxgrove, West Sussex, United Kingdom) and at the Magdalenian Gough's Cave site (Somerset, United Kingdom).[10]
  • Sedrati et al. (2024) report the discovery of Late Pleistocene footprints from a rocky beach in Larache (Morocco) representing the oldest known footprints produced by Homo sapiens reported from Northern Africa and the Southern Mediterranean.[11]
  • Evidence from the study of human remains from the Ilsenhöhle site in Ranis (Germany ), interpreted as indicating that Homo sapiens reached parts of Europe north of the Alps by 45,000 years ago, is presented by Mylopotamitaki et al. (2024);[12] Pederzani et al. (2024) interpret people from Ilsenhöhle as living in environment characterized by temperatures substantially below modern-day conditions,[13] while Smith et al. (2024) report evidence interpreted as indicative of low-intensity use of the site, consistent with small, mobile groups occupying different localities for a short time, and indicative of low dietary variability, with a diet based on large terrestrial mammals.[14]
  • Yang et al. (2024) identify an Initial Upper Paleolithic assemblage at the Shiyu site in northern China, providing evidence of expansion of Homo sapiens into eastern Asia by about 45,000 years ago, as well as evidence of development of advanced cultural behaviours by people from the studied site.[15]
  • Conard & Rots (2024) describe a perforated baton made from mammoth ivory from the Hohle Fels Cave (Germany), and interpret is as a probable Aurignacian rope making tool.[16]
  • Baker et al. (2024) study personal ornaments of European hunter-gatherers living between 34,000 and 24,000 years ago, and interpret them as indicative of existence of nine distinct cultural entities during the time of the existence of the Gravettian technocomplex.[17]
  • Evidence from the eastern seaboard of Australia , interpret as indicative of human occupation by 30,000 years ago and possibly as early as 49,000–45,000 years ago, is presented by Adams et al. (2024).[18]
  • Hawkins et al. (2024) report the discovery of remains of a man and a woman interred in a single grave from the Ratu Mali 2 site (Kisar, Indonesia) which are at least 14.7-thousand-years-old, representing the oldest human burials with established funerary rites from Wallacea reported to date.[19]
  • Evidence from ancient DNA from chewed pitch from the Mesolithic Huseby Klev site (Sweden), interpreted as indicating that people from this site suffered from dental diseases similar to modern periodontitis cases, is presented by Kırdök et al. (2024).[20]
  • Allentoft et al. (2024) present evidence from ancient genomes from Eurasia, interpreted as indicative of existence of a clear genetic division between Eurasian human populations living on the opposite sites of the boundary zone extending from the Black Sea to the Baltic which lasted throughout the Mesolithic and Neolithic, with large-scale shifts in genetic ancestry related to the arrival of the Early European Farmers visible only in the areas west of the boundary zone, and dissolving only after the spread of the Western Steppe Herders across western Eurasia.[21]

Rodents

Rodent research

  • Zack & Penkrot (2024) describe new fossil material of Lophiparamys debequensis from the Eocene Willwood Formation (Wyoming, United States), providing new information on the anatomy of this rodent and representing its first record from the Bighorn Basin.[22]

Other euarchontoglires

Miscellaneous euarchontoglires research

  • Purported paromomyid "Arcius" ilerdensis is reinterpreted as a member of the family Apatemyidae and transferred to the genus Heterohyus by Beard & Métais (2024).[23]
  • A study on the affinities picrodontids, as indicated by the anatomy of the skull of Zanycteris paleocenus, is published by Crowell, Wible & Chester (2024), who argue that picrodontids were not stem primates or even euarchontans.[24]

Laurasiatherians

Artiodactyls

Cetaceans

Name Novelty Status Authors Age Type locality Country Notes Images

Echericetus[25]

Gen. et sp. nov

Valid

Hernández-Cisneros et al.

Oligocene

El Cien Formation

 Mexico

A member of the family Eomysticetidae. The type species is E. novellus.

Cetacean research
  • A vertebra of a small-bodied member of the genus Pachycetus, showing low compactness compared to vertebrae of larger members of this genus, is described from the Western Scheldt Estuary at the Belgian-Dutch border (probably from the Bartonian Maldegem Formation) by van Vliet et al. (2024).[26]
  • Tsai, Kimura & Hasegawa (2024) describe an aetiocetid skull from the Jinnobaru Formation of the Ashiya Group (Japan ), and interpret this finding as indicative of coexistence of toothed and baleen-assisted mysticetes in the northwestern Pacific during the Oligocene.[27]
  • Tanaka (2024) reports evidence indicative of the existence of a relationship between basihyal-thyrohyal shape and feeding strategy in baleen whales, and argues that the earliest members of Chaeomysticeti fed exclusively on small prey using the baleen plates for filtering, and that dietary preferences of members of Chaeomysticeti diversified later in their evolutionary history.[28]

Other artiodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Aliusuellus[29]

Gen. et sp. nov

Valid

Bai et al.

Eocene (Irdinmanhan)

Erlian Basin

 China

A member of the family Tapirulidae. The type species is A. laolii.

Irdinodon[29]

Gen. et sp. nov

Valid

Bai et al.

Eocene (Irdinmanhan)

Erlian Basin

 China

A member of the subfamily Lantianiinae. The type species is I. bicuspidata.

Paraphenacodus gabuniai[29]

Sp. nov

Valid

Bai et al.

Eocene (Arshantan)

Erlian Basin

 China

Other artiodactyl research
  • A study on the tooth wear in fossil bovids from the Tugen Hills Succession of the Baringo Basin (Kenya) is published by Greiner et al. (2024), who interpret their findings as indicative of increase of mixed-feeding behaviors in post-Miocene bovids.[30]
  • New fossil material of Miocene bovids is described from five localities from the Middle Siwalik (Pakistan ) by Naz et al. (2024), who interpret the studied fossils as indicative of moist environment with abundant small bodies of standing water.[31]
  • Fidalgo et al. (2024) review the fossil record of hippopotamids on the Iberian Peninsula during the Quaternary, an interpret the fossil record as suggestive of a brief coexistence of Hippopotamus antiquus and the hippopotamus close to the extinction of the former species.[32]

Carnivorans

Name Novelty Status Authors Age Type locality Country Notes Images

Fejfarictis[33]

Gen. et sp. nov

Valid

De Bonis et al.

Oligocene

 Czech Republic

An early aeluroid. The type species is F. valecensis.

Magerifelis[34]

Gen. et sp. nov

Salesa et al.

Miocene

 France
 Spain

A medium-sized feline. The type species is M. peignei.

Valenictus sheperdi[35]

Sp. nov

Boessenecker et al.

Pliocene

Purisima Formation

 United States
( California)

Carnivoran research

  • Villalba de Alvarado et al. (2024) describe new fossil material of the Asian black bear from the Pleistocene sites in Spain , including postcranial remains which fit within the range of morphological variation of extant members of the species.[36]
  • Kastelic Kovačič et al. (2024) present a novel approach to sampling dental collagen which can be used to determine the diet and behavior of cave bears throughout their life, and apply their methods to cave bears remains from the Divje babe I cave (Slovenia), interpreting their findings as indicative of differences in the carbon isotope values from tooth collagen of hibernating individuals and those that failed to hibernate, as well as indicating that the juvenile cave bears did not suckle milk after the first hibernation.[37]
  • Faggi et al. (2024) describe new fossil material of Meles thorali from the Early Pleistocene locality Saint-Vallier (France ), and interpret M. thorali as a taxon distinct from the European badger and closely related to Meles teilhardi.[38]
  • Valenzuela-Toro, Gutstein & Suárez (2024) describe new fossil material of earless seals from the Bahía Inglesa Formation (Chile ), including the first record of Hadrokirus martini outside Peru, a member of the genus Acrophoca morphologically distinguishable from A. longirostris, and four indeterminate seals with considerable morphological differences from known contemporaneous taxa.[39]

Perissodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Plesiaceratherium tongxinense[40]

Sp. nov

Valid

Sun, Deng & Wang

Miocene

 China

An aceratheriine rhinoceros.

Perissodactyl research

  • Li et al. (2024) describe new fossil material of Pliorhinus ringstroemi from the Miocene deposits from the Linxia Basin (China), providing new information on the skeletal anatomy of this species, interpret P. ringstroemi as a distinct species related to P. megarhinus and P. miguelcrusafonti, and argue that Pliorhinus might have originated in Asia and migrated to Europe at the latest Miocene.[41]
  • A study on the fossil record of Miocene and Pliocene horses from the Upper Bone Valley Formation (Florida, United States ) is published by Killingsworth & MacFadden (2024), who interpret their findings as indicating that both sampling bias and ecological causes might be responsible for the presence or absence of different horse taxa at fossil sites.[42]

Other laurasiatherians

Miscellaneous laurasiatherian research

  • Ferrero et al. (2024) describe fossil material of Posnanskytherium desaguaderoi from the Pliocene Tafna Formation, representing the first record of the genus Posnanskytherium from Argentina and the southernmost record of this genus reported to date.[43]
  • Fernández-Monescillo & Tauber (2024) report evidence indicative of decline in the size and body mass in the last known population of Mesotherium cristatum from the Bonaerian of the Corralito site (Argentina), interpreted as related to environmental changes in South America during the Pleistocene which caused reduction of the distribution area of M. cristatum.[44]

Metatherians

Metatherian research

  • Carneiro et al. (2024) describe new fossil material of Carolocoutoia ferigoloi from the Eocene Itaboraí Basin (Brazil ), and interpret Carolocoutoia as the sister taxon of Protodidelphis and as a specialized frugivore.[45]
  • Hu et al. (2024) estimate blood flow rates in the femora of extinct kangaroos belonging to the genera Macropus, Protemnodon, Sthenurus, Simosthenurus and Procoptodon, and interpret their findings as suggesting that the locomotion of the studied kangaroos involved applying greater forces to the leg bones compared to the locomotion of extant kangaroos.[46]
  • A tooth representing the first fossil material of a member of the genus Protemnodon from the lowland part of New Guinea is described from the Lachitu Cave (Papua New Guinea) by Koungoulos, Flannery & O'Connor (2024).[47]

Other mammals

Other mammalian research

  • Evidence indicating that aspects of both shape and size of the lower fourth premolar can contribute to distinguishing between species belonging to the multituberculate genus Mesodma is presented by Ashbaugh et al. (2024).[48]


References

  1. Roditi, E.; Bocherens, H.; Konidaris, G. E.; Athanassiou, A.; Tourloukis, V.; Karkanas, P.; Panagopoulou, E.; Harvati, K. (2024). "Life-history of Palaeoloxodon antiquus reveals Middle Pleistocene glacial refugium in the Megalopolis basin, Greece". Scientific Reports 14: 1390. doi:10.1038/s41598-024-51592-9. PMID 38228659. 
  2. Rowe, A. G.; Bataille, C. P.; Baleka, S.; Combs, E. A.; Crass, B. A.; Fisher, D. C.; Ghosh, S.; Holmes, C. E. et al. (2024). "A female woolly mammoth's lifetime movements end in an ancient Alaskan hunter-gatherer camp". Science Advances 10 (3): eadk0818. doi:10.1126/sciadv.adk0818. PMID 38232155. 
  3. Zhang, Y.; Westaway, K. E.; Haberle, S.; Lubeek, J. K.; Bailey, M.; Ciochon, R.; Morley, M. W.; Roberts, P. et al. (2024). "The demise of the giant ape Gigantopithecus blacki". Nature 625 (7995): 535–539. doi:10.1038/s41586-023-06900-0. PMID 38200315. 
  4. Mussi, M.; Skinner, M. M.; Melis, R. T.; Panera, J.; Rubio-Jara, S.; Davies, T. W.; Geraads, D.; Bocherens, H. et al. (2023). "Early Homo erectus lived at high altitudes and produced both Oldowan and Acheulean tools". Science 382 (6671): 713–718. doi:10.1126/science.add9115. PMID 37824630. Bibcode2023Sci...382..713M. 
  5. Muttoni, G.; Perini, S.; Melis, R. T.; Mussi, M. (2023). "Chronology of the earliest peopling of the Ethiopian highlands at Melka Kunture pre-dating the 1.925 Ma base of the Olduvai subchron". Quaternary Science Reviews 319: 108330. doi:10.1016/j.quascirev.2023.108330. Bibcode2023QSRv..31908330M. 
  6. Gossa, T.; Asrat, A.; Hovers, E.; Tholt, A. J.; Renne, P. R. (2024). "Claims for 1.9–2.0 Ma old early Acheulian and Oldowan occupations at Melka Kunture are not supported by a robust age model". Quaternary Science Reviews 326: 108506. doi:10.1016/j.quascirev.2024.108506. 
  7. Davies, T. W.; Gunz, P.; Spoor, F.; Alemseged, Z.; Gidna, A.; Hublin, J.-J.; Kimbel, W. H.; Kullmer, O. et al. (2024). "Dental morphology in Homo habilis and its implications for the evolution of early Homo". Nature Communications 15: 286. doi:10.1038/s41467-023-44375-9. PMID 38177110. 
  8. Mahoney, P.; McFarlane, G.; Taurozzi, A. J.; Madupe, P. P.; O'Hara, M. C.; Molopyane, K.; Cappellini, E.; Hawks, J. et al. (2024). "Human-like enamel growth in Homo naledi". American Journal of Biological Anthropology. doi:10.1002/ajpa.24893. PMID 38180115. 
  9. Delezene, L. K.; Scott, J. E.; Irish, J. D.; Villaseñor, A.; Skinner, M. M.; Hawks, J.; Berger, L. R. (2024). "Sex-biased sampling may influence Homo naledi tooth size variation". Journal of Human Evolution 187: 103490. doi:10.1016/j.jhevol.2023.103490. PMID 38266614. 
  10. Parfitt, S. A.; Bello, S. M. (2024). "Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages". Royal Society Open Science 11 (1): 231163. doi:10.1098/rsos.231163. PMID 38179084. 
  11. Sedrati, M.; Morales, J. A.; Duveau, J.; El M'rini, A.; Mayoral, E.; Díaz-Martínez, I.; Anthony, E. J.; Bulot, G. et al. (2024). "A Late Pleistocene hominin footprint site on the North African coast of Morocco". Scientific Reports 14: 1962. doi:10.1038/s41598-024-52344-5. PMID 38263453. 
  12. Mylopotamitaki, D.; Weiss, M.; Fewlass, H.; Zavala, E. I.; Rougier, H.; Sümer, A. P.; Hajdinjak, M.; Smith, G. M. et al. (2024). "Homo sapiens reached the higher latitudes of Europe by 45,000 years ago". Nature: 1–6. doi:10.1038/s41586-023-06923-7. PMID 38297117. 
  13. Pederzani, S.; Britton, K.; Trost, M.; Fewlass, H.; Bourgon, N.; McCormack, J.; Jaouen, K.; Dietl, H. et al. (2024). "Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany". Nature Ecology & Evolution: 1–11. doi:10.1038/s41559-023-02318-z. PMID 38297139. 
  14. Smith, G. M.; Ruebens, K.; Zavala, E. I.; Sinet-Mathiot, V.; Fewlass, H.; Pederzani, S.; Jaouen, K.; Mylopotamitaki, D. et al. (2024). "The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany". Nature Ecology & Evolution: 1–14. doi:10.1038/s41559-023-02303-6. PMID 38297138. 
  15. Yang, S.X.; Zhang, J.F.; Yue, J.P.; Wood, R.; Guo, Y.J.; Wang, H.; Luo, W.G.; Zhang, Y. et al. (2024). "Initial Upper Palaeolithic material culture by 45,000 years ago at Shiyu in northern China". Nature Ecology & Evolution: 1–12. doi:10.1038/s41559-023-02294-4. PMID 38238436. https://www.nature.com/articles/s41559-023-02294-4. 
  16. Conard, N. J.; Rots, V. (2024). "Rope making in the Aurignacian of Central Europe more than 35,000 years ago". Science Advances 10 (5): eadh5217. doi:10.1126/sciadv.adh5217. PMID 38295167. 
  17. Baker, J.; Rigaud, S.; Pereira, D.; Courtenay, L. A.; d'Errico, F. (2024). "Evidence from personal ornaments suggest nine distinct cultural groups between 34,000 and 24,000 years ago in Europe". Nature Human Behaviour: 1–14. doi:10.1038/s41562-023-01803-6. PMID 38287173. 
  18. Adams, S.; Norman, K.; Kemp, J.; Jacobs, Z.; Costelloe, M.; Fairbairn, A.; Robins, R.; Stock, E. et al. (2024). "Early human occupation of Australia's eastern seaboard". Scientific Reports 14: 2579. doi:10.1038/s41598-024-52000-y. PMID 38296988. 
  19. Hawkins, S.; Zetika, G. A.; Kinaston, R.; Firmando, Y. R.; Sari, D. M.; Suniarti, Y.; Lucas, M.; Roberts, P. et al. (2024). "Earliest known funerary rites in Wallacea after the last glacial maximum". Scientific Reports 14: 282. doi:10.1038/s41598-023-50294-y. PMID 38168501. 
  20. Kırdök, E.; Kashuba, N.; Damlien, H.; Manninen, M. A.; Nordqvist, B.; Kjellström, A.; Jakobsson, M.; Lindberg, A. M. et al. (2024). "Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals". Scientific Reports 13: 22125. doi:10.1038/s41598-023-48762-6. PMID 38238372. 
  21. Allentoft, M. E.; Sikora, M.; Refoyo-Martínez, A.; Irving-Pease, E. K.; Fischer, A.; Barrie, W.; Ingason, A.; Stenderup, J. et al. (2024). "Population genomics of post-glacial western Eurasia". Nature 625 (7994): 301–311. doi:10.1038/s41586-023-06865-0. PMID 38200295. 
  22. Zack, S. P.; Penkrot, T. A. (2024). "New material of Lophiparamys debequensis from the Willwood Formation (early Eocene) of Wyoming, including the first postcrania of the genus". Journal of Paleontology: 1–16. doi:10.1017/jpa.2023.88. 
  23. Beard, K. C.; Métais, G. (2024). "Oldest record of Apatemyidae (Mammalia, Apatotheria) from Spain and the taxonomic status of Spanish paromomyids (Mammalia, Primatomorpha)". Journal of Vertebrate Paleontology: e2288651. doi:10.1080/02724634.2023.2288651. 
  24. Crowell, J. W.; Wible, J. R.; Chester, S. G. B. (2024). "Basicranial evidence suggests picrodontid mammals are not stem primates". Biology Letters 20 (1): 20230335. doi:10.1098/rsbl.2023.0335. PMID 38195058. 
  25. Hernández-Cisneros, A. E.; Schwennicke, T.; Rochín-Bañaga, H.; Tsai, C.H. (2024). "Echericetus novellus n. gen. n. sp. (Cetacea, Mysticeti, Eomysticetidae), an Oligocene baleen whale from Baja California Sur, Mexico". Journal of Paleontology: 1–20. doi:10.1017/jpa.2023.80. 
  26. van Vliet, H. J.; Bosselaers, M. E. J.; Munsterman, D. K.; Dijkshoorn, M. L.; de Groen, J. J.; Post, K. (2024). "A vertebra of a small species of Pachycetus from the North Sea and its inner structure and vascularity compared with other basilosaurid vertebrae from the same site". PeerJ 12: e16541. doi:10.7717/peerj.16541. 
  27. Tsai, C.-H.; Kimura, T.; Hasegawa, Y. (2024). "Coexistence of Oligocene toothed and baleen-assisted mysticetes in the northwestern Pacific". Fossil Record 27 (1): 95–100. doi:10.3897/fr.27.e111567. 
  28. Tanaka, Y. (2024). "A feeding organ the basihyal and thyrohyal tells which size of prey do true baleen whales (Cetacea, Chaeomysticeti) eat". Palaeontologia Electronica 27 (1): 27.1.a8. doi:10.26879/1311. 
  29. 29.0 29.1 29.2 Bai, B.; Theodor, J. M.; Wang, Y-Q.; Meng, J. (2024). "New Early and Middle Eocene artiodactyls from the Erlian Basin, Inner Mongolia, China". Journal of Vertebrate Paleontology: e2294006. doi:10.1080/02724634.2023.2294006. 
  30. Greiner, E.; El-Shaarawi, W.; Orlikoff, E.; Sherwood, R.; O'Brien, K.; Kingston, J. (2024). "Dental mesowear from the Tugen Hills Succession (Baringo Basin, Kenya) demonstrates increase in mixed-feeding behavior of late Miocene to Plio-Pleistocene Bovidae". Palaeogeography, Palaeoclimatology, Palaeoecology: 112058. doi:10.1016/j.palaeo.2024.112058. 
  31. Naz, S.; Sultana, T.; Sultana, S.; Yasin, R.; Samiullah, K. (2024). "New fossil remains of bovids from the Middle Siwaliks of Punjab, Pakistan". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2300639. 
  32. Fidalgo, D.; Madurell-Malapeira, J.; Martino, R.; Pandolfi, L.; Rosas, A. (2024). "An Updated Review of The Quaternary Hippopotamus Fossil Records from the Iberian Peninsula". Quaternary 7 (1): 4. doi:10.3390/quat7010004. 
  33. de Bonis, L.; Ekrt, B.; Kunstmüllerová, L.; Martínek, K.; Rapprich, V.; Wagner, J. (2024). "New early aeluroid carnivoran (Mammalia, Carnivora, Feliformia) from the classical palaeontological locality Valeč, the Czech Republic". Geodiversitas 46 (1): 1–12. doi:10.5252/geodiversitas2024v46a1. https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/46/1. 
  34. Salesa, M. J.; Gamarra, J.; Siliceo, G.; Antón, M.; Morales, J. (2024). "Unraveling the diversity of early felines: a new genus of Felinae (Carnivora, Felidae) from the Middle Miocene of Madrid (Spain)". Journal of Vertebrate Paleontology: e2288924. doi:10.1080/02724634.2023.2288924. 
  35. Boessenecker, R. W.; Poust, A. W.; Boessenecker, S. J.; Churchill, M. (2024). "Tusked walruses (Carnivora: Odobenidae) from the Miocene–Pliocene Purisima Formation of Santa Cruz, California (U.S.A.): a new species of the toothless walrus Valenictus and the oldest records of Odobeninae and Odobenini". Journal of Vertebrate Paleontology: e2296567. doi:10.1080/02724634.2023.2296567. 
  36. Villalba de Alvarado, M.; Crégut-Bonnoure, E.; Arsuaga, J. L.; Collado Giraldo, H.; van der Made, J.; Gómez-Olivencia, A. (2024). "Pleistocene Asian black bear (Ursus thibetanus Cuvier, 1823) in the Iberian Peninsula: new evidence and a complete review". Quaternary Science Reviews 325: 108385. doi:10.1016/j.quascirev.2023.108385. 
  37. Kastelic Kovačič, U.; Debeljak, I.; Potočnik, D.; Ogrinc, N.; Zupančič, N. (2024). "A novel ontogeny-related sampling of dental tissues for stable isotopes interpretation of the paleobiology of the cave bear". Quaternary Science Reviews 325: 108481. doi:10.1016/j.quascirev.2023.108481. 
  38. Faggi, A.; Bartolini-Lucenti, S.; Madurell-Malapeira, J.; Abramov, A. V.; Puzachenko, A. Y.; Jiangzuo, Q.; Peiran, L.; Rook, L. (2024). "Quaternary Eurasian badgers: Intraspecific variability and species validity". Journal of Mammalian Evolution 31: 3. doi:10.1007/s10914-023-09696-y. 
  39. Valenzuela-Toro, A. M.; Gutstein, C. S.; Suárez, M. E. (2024). "Exceptional morphological and taxonomic diversity of early seals (Phocidae) from the Atacama Region, Chile". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2301671. 
  40. Sun, D.; Deng, T.; Wang, S. (2024). "New materials of plesiacerathere (Perissodactyla, Rhinocerotidae) from the late Early Miocene of Northern China". PeerJ 12: e16822. doi:10.7717/peerj.16822. 
  41. Li, S.; Sanisidro, O.; Wang, S.; Yang, R.; Deng, T. (2024). "New materials of Pliorhinus ringstroemi from the Linxia Basin (Late Miocene, eastern Asia) and their taxonomical and evolutionary implications". Journal of Mammalian Evolution 31: 6. doi:10.1007/s10914-023-09698-w. 
  42. Killingsworth, S. R.; MacFadden, B. J. (2024). "Species occurrences of Mio-Pliocene horses (Equidae) from Florida: sampling, ecology, or both?". Paleobiology: 1–12. doi:10.1017/pab.2023.35. 
  43. Ferrero, B. S.; Schmidt, G. I.; Costamagna, D.; Miño-Boiliniv, Á. R.; Zurita, A. E.; Quiñones, S. I.; Cuadrelli, F.; Luna, C. A. et al. (2024). "First record of Posnanskytherium (Notoungulata, Toxodontidae) in the late Neogene of eastern Puna, Argentina". Journal of Mammalian Evolution 31: 5. doi:10.1007/s10914-023-09700-5. 
  44. Fernández-Monescillo, M.; Tauber, A. A. (2024). "Beyond extinction: Uncovering morphological aspects of the last typotherid population (Mesotherium cristatum) and the unexpected body mass decrease". Quaternary Science Reviews 325: 108479. doi:10.1016/j.quascirev.2023.108479. 
  45. Carneiro, L. M.; Zanesco Ferreira, T.; Bergqvist, L. P.; Goin, F. J.; Guedes, F. R.; Agnes, Á.; Oliveira, É. V. (2024). "New material of Carolocoutoia ferigoloi (Mammalia, Marsupialia, Didelphimorphia): Systematic affinities and dietary inferences". Journal of South American Earth Sciences 134: 104777. doi:10.1016/j.jsames.2023.104777. 
  46. Hu, Q.; Seymour, R. S.; Snelling, E. P.; Wells, R. T. (2024). "Blood flow rate to the femur of extinct kangaroos implies a higher locomotor intensity compared to living hopping macropods". Journal of Mammalian Evolution 31: 2. doi:10.1007/s10914-023-09701-4. 
  47. Koungoulos, L. G.; Flannery, T. F.; O'Connor, S. (2024). "First record of Protemnodon (Macropodidae: Marsupialia) from Pleistocene lowland New Guinea". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2024.2304340. 
  48. Ashbaugh, A. J.; Scott, C. S.; Wilson Mantilla, G. P.; Theodor, J. M. (2024). "Species discrimination in the multituberculate Mesodma Jepsen, 1940 (Mammalia, Allotheria): considerations of size, shape, and form". Journal of Paleontology: 1–11. doi:10.1017/jpa.2023.76.