Beraha constants

From HandWiki
Short description: Mathematical constants

The Beraha constants are a series of mathematical constants by which the [math]\displaystyle{ n\text{th} }[/math] Beraha constant is given by

[math]\displaystyle{ B (n) = 2 + 2 \cos \left ( \frac{2\pi}{n} \right ). }[/math]

Notable examples of Beraha constants include [math]\displaystyle{ B (5) }[/math]is [math]\displaystyle{ \varphi + 1 }[/math], where [math]\displaystyle{ \varphi }[/math] is the golden ratio, [math]\displaystyle{ B (7) }[/math]is the silver constant[1] (also known as the silver root),[2] and [math]\displaystyle{ B (10) = \varphi + 2 }[/math].

The following table summarizes the first ten Beraha constants.

[math]\displaystyle{ n }[/math] [math]\displaystyle{ B(n) }[/math] Approximately
1 4
2 0
3 1
4 2
5 [math]\displaystyle{ \frac{1}{2}(3+\sqrt{5}) }[/math] 2.618
6 3
7 [math]\displaystyle{ 2 + 2 \cos (\tfrac{2}{7}\pi) }[/math] 3.247
8 [math]\displaystyle{ 2 + \sqrt{2} }[/math] 3.414
9 [math]\displaystyle{ 2 + 2 \cos (\tfrac{2}{9}\pi) }[/math] 3.532
10 [math]\displaystyle{ \frac{1}{2}(5+\sqrt{5}) }[/math] 3.618

See also

Notes

References

  • Weisstein, Eric W.. "Beraha Constants". http://mathworld.wolfram.com/BerahaConstants.html. 
  • Beraha, S. Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1974.
  • Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 143, 1983.
  • Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, pp. 160–163, 1986.
  • Tutte, W. T. "Chromials." University of Waterloo, 1971.
  • Tutte, W. T. "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
  • Tutte, W. T. "Chromatic Sums for Planar Triangulations I: The Case [math]\displaystyle{ \lambda = 1 }[/math]," Research Report COPR 72–7, University of Waterloo, 1972a.
  • Tutte, W. T. "Chromatic Sums for Planar Triangulations IV: The Case [math]\displaystyle{ \lambda = \infty }[/math]." Research Report COPR 72–4, University of Waterloo, 1972b.