Astronomy:Qatar-1

From HandWiki
Short description: Star in the constellation Draco
Qatar-1
Observation data
Equinox J2000.0]] (ICRS)
Constellation Draco
Right ascension  20h 13m 31.6176s
Declination 65° 09′ 43.4909″
Apparent magnitude (V) 12.84
Characteristics
Evolutionary stage main sequence star
Spectral type K3V
B−V color index 1.06
V−R color index 0.19
J−H color index 0.472
J−K color index 0.590
Variable type planetary transit variable
Astrometry
Radial velocity (Rv)-37.835±0.063 km/s
Proper motion (μ) RA: 12.636±0.048 mas/yr
Dec.: 58.170±0.041 mas/yr
Parallax (π)5.3587 ± 0.0231 mas
Distance609 ± 3 ly
(186.6 ± 0.8 pc)
Details[1][2]
Mass0.85±0.03 M
Radius0.823±0.025 R
Surface gravity (log g)4.536±0.024 cgs
Temperature4861±125 K
Metallicity [Fe/H]0.2±0.1 dex
Rotational velocity (v sin i)1.7±0.3 km/s
Age4.5 Gyr
Other designations
Qatar-1, 2MASS J20133160+6509433, Gaia DR2 2244830490514284928, V592 Dra[3]
Database references
SIMBADdata

Qatar-1 is an orange main sequence star in the constellation of Draco.

Star characteristics

Qatar-1 has an average to high metallicity of 160% of solar,[1] and is of similar age to Sun.[2] The star has significant starspot activity.[4]

Planetary system

The "Hot Jupiter" class planet Qatar-1b was discovered by the Qatar Exoplanet Survey in 2010.[1] The planetary orbit is likely aligned with the rotational axis of the star, with the misalignment measurement based on the Rossiter-McLaughlin effect equal to −8.4±7.1 degrees.[2] The planet has a large measured temperature difference between dayside (1696±39 K) and nightside (1098±158 K).[5] A spectroscopic study in 2017 does suggest that Qatar-1b has relatively clear skies with a few clouds.[6]

Additional planets or a brown dwarf in the system were suspected in 2013,[7] but were refuted in 2015.[8][9]

The transit-timing variation search in 2020 has also resulted in no detection of additional planets in the system,[10][11] although by 2022 additional transit-timing variation data have suggested the planetary system is accelerating under influence of the unseen long-period companion.[12]

The Qatar-1 planetary system[1][2][10]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 1.33±0.05 MJ 0.02343±0.0012 1.4200236±0.0000001[11] 0.020+0.011−0.01 84.23±0.06° 1.19±0.09 RJ

References

  1. 1.0 1.1 1.2 1.3 Alsubai, K. A.; Parley, N. R.; Bramich, D. M.; West, R. G.; Sorensen, P. M.; Collier Cameron, A.; Latham, D. W.; Horne, K. et al. (2011). "Qatar-1b: A hot Jupiter orbiting a metal-rich K dwarf star". Monthly Notices of the Royal Astronomical Society 417 (1): 709–716. doi:10.1111/j.1365-2966.2011.19316.x. Bibcode2011MNRAS.417..709A. 
  2. 2.0 2.1 2.2 2.3 Covino, E.; Esposito, M.; Barbieri, M.; Mancini, L.; Nascimbeni, V.; Claudi, R.; Desidera, S.; Gratton, R. et al. (2013). "The GAPS programme with HARPS-N at TNG". Astronomy & Astrophysics 554: A28. doi:10.1051/0004-6361/201321298. 
  3. Qatar 1 -- High proper-motion Star
  4. Mislis, D.; Mancini, L.; Tregloan-Reed, J.; Ciceri, S.; Southworth, J.; d'Ago, G.; Bruni, I.; Baştürk, Ö. et al. (2015). "High-precision multiband time series photometry of exoplanets Qatar-1b and TrES-5b". Monthly Notices of the Royal Astronomical Society 448 (3): 2617–2623. doi:10.1093/mnras/stv197. Bibcode2015MNRAS.448.2617M. 
  5. May, Erin; Stevenson, Kevin; Bean, Jacob; Bell, Taylor; Cowan, Nicolas; Dang, Lisa; Desert, Jean-Michel; Fortney, Jonathan et al. (2022), "A New Analysis of Eight Spitzer Phase Curves and Hot Jupiter Population Trends: Qatar-1b, Qatar-2b, WASP-52b, WASP-34b, and WASP-140b", The Astronomical Journal 163 (6): 256, doi:10.3847/1538-3881/ac6261, Bibcode2022AJ....163..256M 
  6. von Essen, C.; Cellone, S.; Mallonn, M.; Albrecht, S.; Miculán, R.; Müller, H. M. (2017). "Testing connections between exo-atmospheres and their host stars". Astronomy & Astrophysics 603: A20. doi:10.1051/0004-6361/201730506. 
  7. von Essen, C.; Schröter, S.; Agol, E.; Schmitt, J. H. M. M. (2013). "Qatar-1: Indications for possible transit timing variations". Astronomy & Astrophysics 555: A92. doi:10.1051/0004-6361/201321407. Bibcode2013A&A...555A..92V. 
  8. MacIejewski, G.; Fernández, M.; Aceituno, F. J.; Ohlert, J.; Puchalski, D.; Dimitrov, D.; Seeliger, M.; Kitze, M. et al. (2015). "No variations in transit times for Qatar-1 B". Astronomy & Astrophysics 577: A109. doi:10.1051/0004-6361/201526031. Bibcode2015A&A...577A.109M. 
  9. Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G. (2015). "TRANSIT TIMING VARIATION MEASUREMENTS OF WASP-12b AND QATAR-1b: NO EVIDENCE OF ADDITIONAL PLANETS". The Astronomical Journal 153 (2): 78. doi:10.3847/1538-3881/153/2/78. 
  10. 10.0 10.1 Thakur, Parijat; Mannaday, Vineet Kumar; Sahu, Devendra Kumar; Chand, Swadesh; Jiang, Ing-Guey (2020), "Investigating Extra-solar Planetary System Qatar-1 through Transit Observations", Bulletin de la Société Royale des Sciences de Liège: 132–136, doi:10.25518/0037-9565.7577 
  11. 11.0 11.1 Su, Li-Hsin; Jiang, Ing-Guey; Sariya, Devesh P.; Lee, Chiao-Yu; Yeh, Li-Chin; Mannaday, Vineet Kumar; Thakur, Parijat; Sahu, D. K. et al. (2021), "Are There Transit Timing Variations for the Exoplanet Qatar-1b?", The Astronomical Journal 161 (3): 108, doi:10.3847/1538-3881/abd4d8, Bibcode2021AJ....161..108S 
  12. Mannaday, Vineet Kumar; Thakur, Parijat; Southworth, John; Jiang, Ing-Guey; Sahu, D. K.; Mancini, L.; Vaňko, M.; Kundra, Emil et al. (2022), "Revisiting the Transit Timing Variations in the TrES-3 and Qatar-1 Systems with TESS Data", The Astronomical Journal 164 (5): 198, doi:10.3847/1538-3881/ac91c2, Bibcode2022AJ....164..198M